
10 Science April 2021 MEMO

1.1 C 1.2 B 1.3 A 1.4 D 1.5 A

- 2.1.1 nitrogen ✓
- 2.1.2 p⁺ = 7 \checkmark n⁰=7 \checkmark e⁻ = 7 \checkmark

3.1 Isotope: Same element different number of neutrons (mass) $\checkmark \checkmark$

3.2 Rel Atomic Mass =
$$\frac{60}{100} \times 64 + \frac{40}{100} \times 67 = 65.2 \checkmark \checkmark \checkmark$$

3.3 Zn, zinc \checkmark [6]

- 4.1 O_2 , oxygen \checkmark
- 4.2 Si, silicon√
- 4.3 F, flourine√
- 4.4 Ar, Argon√
- 4.5 Co, Cobalt√

[5]

- 5.1 <u>Ionization Energy</u> is the <u>energy needed</u> \checkmark to remove an electron(s) \checkmark from an atom whilst Electron Affinity is the energy released \checkmark when an atom gains \checkmark an electron(s)
- 5.2.1 As the atomic radius decreases (left to right) so the IE increases since the electron's are closer ✓ to the nucleus ∴ stronger forces of attraction requires more ✓ energy to break OR

as the electron affinity increases (Left to right on Periodic table)) so the I.E. also increases. An atom with a higher electron affinity \checkmark is more reluctant / less likely to release an electron \checkmark

[6]

6.1.1 loses electrons ✓

6.1.2 $n = \frac{Q}{q_e} = \frac{3.5 \times 10^{-6}}{1.6 \times 10^{-19}} = 2.19 \times 10^{13} electrons lost$ (formula subst ans)

6.2.1 Electrons transferred \checkmark from A \rightarrow B \checkmark

6.2.2 Final charge on both is: $Q = \frac{-4+6}{2} = \frac{2}{2} = +1 \ mC$ on both $\checkmark \checkmark$

- 6.3.1 positive√
- 6.3.2 Electrons transferred ✓ from perspex to polyester ✓
- 6.3.3 Less positively charged ✓

[12]