

ALEXANDER ROAD HIGH SCHOOL

April 2021

PHYSICAL SCIENCES CONTROL TEST

50 MINUTES

ΡE

GRADE 10

TOTAL = 50

Instructions:

- The question paper consists of 6 questions.
- Answer all the questions.
- Answer section A on the answer sheet provided AND section B on folio sheets.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to two (2) decimal places where necessary.
- A periodic table has been provided on the back of the answer sheet.

SECTION A (answer on the answer sheet)

QUESTION 1:

Four possible options are provided as answers to the following questions. Each question has only one correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (1.1 - 1.5) on the answer sheet.

1.1 Which of the following substances have the same number of valence electrons

i: ${}^{39}_{19}K^+$ *ii*: ${}^{40}_{18}Ar$ *iii*: ${}^{35}_{17}Cl^-$ *iv*: ${}^{32}_{16}S^{2-}$

- A. i & ii only
- B. iii & iv only
- C. all of them
- D. none of them
- 1.2 The Group IV element in the 4th period of the periodic table is:
 - A. tin (Sn)
 - B. germanium (Ge)
 - C. silicon
 - D. sulphur

- 1.3 Which one of the following groups of elements show the correct trend of the atomic radii of elements?
 - A. K > Fe > Zn > Kr
 - B. K < Fe < Zn < Kr
 - C. H > Li > Na > K
 - D. K < Na < Li < H
- 1.4 When an atom X of an element in Group VI reacts to become X^{2-} , the...
 - A. mass number of X increases.
 - B. atomic number of X decreases.
 - C. charge of the **nucleus** increases.
 - D. number of filled orbitals increases.
- 1.5 Which ONE of the following electron configurations represents an alkali-earth?
 - A. $1s^2 2s^2$
 - B. 1s² 2s² 2p⁵
 - C. $1s^2 2s^2 2p^6$
 - D. $1s^2 2s^2 2p^4$

TOTAL SECTION A = [10]

[11]

[6]

Question 2

For the following symbol: ${}^{14}_{7}N$, give or draw:

2.1.1	The name of the element.	(1)
2.1.2	The number of all its subatomic particles.	(3)
2.1.3	Its Aufbau diagram.	(2)
2.1.4	Its sp-notation	(2)
2.1.5	Its Lewis notation.	(1)
2.2	Draw the Aufbau diagram of S ²⁻	(2)

Question 3

An element has the following two isotopes ⁶⁴M and ⁶⁷M in the proportions:

60 % of ⁶⁴M and 40% of ⁶⁷M

3.1	Define the term <i>isotope</i> .	(2)
3.2	Calculate its relative atomic mass.	(3)
3.3	What element is it most likely to be?	(1)

Question 4

Identify the elements on the periodic table from the following descriptors. Write their name and symbol.

4.1	The Group VII element that is a gas at room temperature.	(1)
4.2	A metalloid in the 3 rd period.	(1)
4.3	The halogen in the second period.	(1)
4.4	The element that has the same electron configuration as an Ca^{2+} ion.	(1)
4.5	The transition element with 32 neutrons.	(1) [5]

QUESTION 5

5.1 Explain the difference between ionisation energy and electron affinity. (4)

The first ionisation energy and electron affinity of the period 3 elements are shown in the table below.

ELEMENT	FIRST IONISATION	
	ENERGY (KJ.IIIOF)	AFFINITY (KJ.IIIOF)
Sodium	496	53
Magnesium	738	0
Aluminium	578	44
Silicon	786	134
Phosphorus	1012	72
Sulphur	1000	200
Chlorine	1251	349
Argon	1521	0

5.2 Give a reason for the trend in the first ionisation energy as seen in the table.

(2) [6] <u>Question 6</u> Formula: $Q = nq_e$ $q_e = -1.6 \times 10^{-19} \text{ C}$

- 6.1 A balloon is rubbed against someone's hair. It picks up a positive charge of + 0.35 μ C (micro-coulombs).
- 6.1.1 Did it gain or lose electrons?L2(1)
- 6.1.2 How many electrons did the balloon gain or lose? L2/3 (3)
- 6.2 Two identical balls, A & B, on insulated stands have respectively charges of:A: -4 mC and B: +6 mC

- 6.2.1 Explain what is happening, in terms of electrons, when they touch.
- 6.2.2 Calculate the final charge on each ball.
- 6.3 Given the Triboelectric Series alongside, consider rubbing a perspex ruler against your blazer which is made of 100% polyester.
- 6.3.1 What is the resulting charge on the ruler?
- 6.3.2 Explain how it became charged in terms of electrons.
- 6.3.3 How would it be different if human hair was used instead of your blazer?

ler ch	Very positive	air rabbit fur
(1)		perspex glass human hair nylon
(2)		wool fur
(1)	Slightly positive	aluminium
101	Neutral	cotton
[O]	Slightly negative	copper silver gold polyester PVC
	Very negative	Teflon

(1)

(3)

TOTAL SECTION B = [40]