P.1 MEMO JUNE 2011

PHYSICAL SCIENCES GRADE 10

QUESTION 1

 1.1
 Acceleration
 (1)

 1.2
 Amplitude
 (1)

 1.3
 Current
 (1)

 1.4
 Valence (electrons)
 (1)

 1.5
 Conductivity
 (1)

[5]

QUESTION 2

2.1	А	В	>	D
2.2	\mathbf{A}	В	С	D
2.3	А	В	С	X
2.4	A	В	С	D
2.5	А	Ř	С	D
2.6	А	В	> <	D
2.7	А	В	С	X
2.8	А	Ř	С	D
2.9	А	В	> <	D
2.10	Α	B	С	D

[10 X 2 =20]

TOTAL SECTION A : 25 MARKS

QUESTION 3

- 3.1 $v = \Delta x / \Delta t \checkmark$ $v = 60 / 4 \checkmark$ $v = 15 \text{ m} \cdot \text{s}^{-1}$ (2)
- 3.2 $v_f = v_i + a \Delta t \checkmark$ = $0\checkmark + (0.8) 20\checkmark$ $v_f = 16 \text{ m} \cdot \text{s}^{-1}\checkmark$ (4)
- 3.3 For the bike $v_f^2 = v_i^2 + 2a x \checkmark$ $16^2 \checkmark = 0^2 + 2(0,8) x \checkmark$ $x = 160 \text{ m }\checkmark$

$$\Delta x = v_i \Delta t + \frac{1}{2a} \Delta t^2 \checkmark$$

= (0)(20) \sigma + \frac{1}{2} (0,8) \sigma (20)^2
= 160 m \sigma

For the car

$$v = \Delta x / \Delta t$$

 $v = \Delta x / 24 \checkmark$
 $\Delta x = 360 \text{ m }\checkmark$

Therefore after 20s $360 \text{ m} - 160 \text{ m} = 200 \text{ m} \checkmark$ (7)

3.4 Slow down and proceed only when it is green and thus prevent an accident. (2)

QUESTION 4

- 4.1 a) Frequency = $45/60\checkmark$ = 0.75 Hz√ = 1/frequency b) Period = 1/0.75 = 1.34 s√ = frequency x wavelength ✓ C) velocity = 0.75 x wavelength 50 Wavelength = $50/0.75\checkmark$ = 66.67 m√ d) Length = n(wavelength/2) \checkmark = 20(66.67/2)√ =666.7m√
- 4.2 a) Constructive interference√
 - b) 6cm√√

4.3 Frequency = No. of complete waves \checkmark that pass a point in a medium in one second $\checkmark \checkmark$

Period = Time it takes for $ONE \checkmark$ wave to pass a point in a medium. \checkmark

QUESTION 5

- 5.1 Investigative Q
 - Нур Method

Results

Discussion

5.2 Expected outcome of the invest q \checkmark

 $\checkmark\checkmark$

- 5.3.1 size of magnets ✓
- 5.3.2 force between the magnets ✓
- 5.3.2 surface, temperature, etc. ✓
- (1)What is the relationship between the size of magets and the force between them? $\checkmark \checkmark$ (2) 5.4

5.5	or		01	•	
Small – small		Big – small		Large – small	
Small – Big		Big – big		Large – big	
Small – large		Big - large		Large – large	

OR

Small – small	
Big – big	
Large – large	

(2) 5.6 Marks allocated for: axes – names and units√ Heading√ Shape (should be bar graph) ✓ (3)

 $\checkmark\checkmark$

The hypothesis was met. ✓ There is a direct proportionality between the size of the 5.7 magnets and the force (of repulsion or attraction) between the magnets \checkmark (2) [15]

QUESTION 6

- 6.1 electrolyte√ (1) Charge can not be created or destroyed but can only be transferred from one object to 6.2 another√√ (2)
- 6.3

(1)

 \checkmark

(2 or 0)

(1)

6.4 Touching between the 2 objects \checkmark in order for the electrons to move \checkmark from the sphere to the rod (2)

<u>Questi</u> 7.1	$\frac{\text{on } 7}{\frac{1}{R_p}} = \frac{1}{24} + \frac{1}{12}$	$=\frac{3}{24}$	√
	$\frac{1}{R_p} = \frac{24}{3} = 8\Omega$	0	√ √
7.2	$I = \frac{V}{R}$	√	•
	$I = \frac{20}{10}$	✓	
	I = 2A	√	
7.3	V = IR $V = (2)(2)$ $V = 4V$	✓ ✓ ✓	
7.4	$V_3 = 20 - 4$ $V_3 = 16V$	✓ ✓	
7.5	$I = \frac{V}{R}$ $I = \frac{16}{24}$ $I = 0.33A$	✓ ✓ ✓	
7.6	DECREASE		

Question 8

8.1.1	29√
8.1.2	29√
8.1.3	Helium√
8.1.4	16√
8.1.5	16√
8.1.6	18√
8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6	D✓ C✓ E✓ F✓ B✓

8.3 Heterogeneous. ✓

8.4a Element that has the same atomic mass but different mass number OR An element with the same number of protons but different number of neutrons. ✓✓

b. relative atomic mass = $(68.9257 \times 60.4\%) + (70.9249 \times 39.6)$ \checkmark = 69,7174 \checkmark 60.4 + 39,6

Gallium√

8.5.1	H₂S✓
8.5.2	NaOH√
8.5.3	(NH₄)₂SO₄ √

Question 9

9.1

- <u>b)</u> $1s^22s^22p^63s^23p^4\checkmark\checkmark$
- c) [Ne] 3s²3p⁴√√
- 9,2 a) 2000 kJ/mol √
 - b) Generally increases across a period \checkmark and decreases down a group. \checkmark
 - c) Boron's electrons occur at higher energy levels and are therefore further away from the nucleus ✓ therefore it requires less energy to remove the electron ✓ as opposed to berylium which occurs at a lower energy level and therefore closer to the nucleus and therefore harder to remove the first electron. ✓ (Add energy level diagrams to emphasise point) ✓ ✓

(3)

Question 10

- 10.1 The <u>measure</u> of the <u>average kinetic energy</u> of the particles $\sqrt{\sqrt{2}}$ (3)
- 10.2 Melting the phase changes from solid to liquid ✓✓
 Boiling the (phase) changes from liquid to gas (when the internal vapour pressure = external atmospheric pressure.) ✓✓
 (4)
- 10.3 Exo: energy released more than energy absorbed Thus: Energy transferred = energy released – energy absorbed ✓ (or swopped) 818 = energy released – 2648✓
 Energy released = 818 + 2648 = 3466 kJ (unit must be there) ✓

- (3)
- 10.5 The temperature is constant: particles move out of their positions, that takes up energy. \checkmark Then temp. rises because particles move faster (higher average E_k) in the liq phase. \checkmark (2)

Question 11

11.10 Metallic√

10.4