PHYSICAL SCIENCES GRADE 10

QUESTION 1

1.1 Acceleration
1.2 Amplitude
1.3 Current
1.4 Valence (electrons)
1.5 Conductivity
[5]

QUESTION 2

2.1	A	B	C	D
2.2	A	B	C	D
2.3	A	B	C	B
2.4	A	B	C	D
2.5	A	B	C	D
2.6	A	B	C	D
2.7	A	B	C	D
2.8	A	B	C	D
2.9	A	B	C	D
2.10	A	B	C	D

[10 X $2=20$]
TOTAL SECTION A : 25 MARKS

QUESTION 3

$3.1 v=\Delta x / \Delta t \checkmark$
$v=60 / 4 \checkmark$
$\mathrm{v}=15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$3.2 \quad v_{f}=v_{i}+a \Delta t \checkmark$
$=0 \checkmark+(0,8) 20 \checkmark$
$v_{f}=16 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$
3.3 For the bike
$v_{f}^{2}=v_{i}^{2}+2 a x \checkmark$
$16^{2} \checkmark=0^{2}+2(0,8) x \checkmark$

$$
x=160 \mathrm{~m} \checkmark
$$

OR

$$
\begin{aligned}
\Delta x & =v_{i} \Delta t+1 / 2 a \Delta t^{2} \checkmark \\
& =(0)(20) \checkmark+1 / 2(0,8) \checkmark(20)^{2} \\
& =160 \mathrm{~m} \quad \checkmark
\end{aligned}
$$

For the car
$\mathrm{v}=\Delta x / \Delta \mathrm{t}$
$v=\Delta x / 24 \checkmark$
$\Delta x=360 \mathrm{~m} \checkmark$
Therefore after 20s $360 \mathrm{~m}-160 \mathrm{~m}=200 \mathrm{~m} \checkmark$
3.4 Slow down and proceed only when it is green and thus prevent an accident.

QUESTION 4

4.1 a) Frequency $=45 / 60 \checkmark$

$$
=0.75 \mathrm{~Hz} \checkmark
$$

b) Period $=1 /$ frequency

$$
=1 / 0.75 \mathrm{r}
$$

$$
=1.34 \mathrm{~s} \checkmark
$$

c) velocity $=$ frequency \times wavelength \checkmark
$50=0.75 \times$ wavelength
Wavelength $=50 / 0.75 \checkmark$
$=66.67 \mathrm{~m} \checkmark$
d) Length $=n($ wavelength/2) \checkmark

$$
=20(66.67 / 2)^{\checkmark}
$$

$$
=666.7 \mathrm{~m} \checkmark
$$

4.2 a) Constructive interference \checkmark
b) $6 \mathrm{~cm} \checkmark \checkmark$
4.3 Frequency $=$ No. of complete waves \checkmark that pass a point in a medium in one second $\checkmark \checkmark$

Period $=$ Time it takes for ONE \checkmark wave to pass a point in a medium.

QUESTION 5

5.1 Investigative Q

Hyp
Method
Results
Discussion
$\checkmark \checkmark$
(2 or 0)
5.2 Expected outcome of the invest q
5.3.1 size of magnets \checkmark
5.3.2 force between the magnets \checkmark
5.3.2 surface, temperature, etc.
5.4 What is the relationship between the size of magets and the force between them? $\checkmark \checkmark$ (2)

OR

Small - small	
Big - big	
Large - large	

$$
\begin{array}{cc}
\text { 5.6 } & \text { Marks allocated for: } \begin{array}{l}
\text { axes }- \text { names and units } \checkmark \\
\text { Heading } \checkmark
\end{array} \\
\text { Shape (should be bar graph) } \checkmark \\
\text { 5.7 }
\end{array}
$$

5.7 The hypothesis was met. \checkmark There is a direct proportionality between the size of the magnets and the force (of repulsion or attraction) between the magnets \checkmark

QUESTION 6

6.1 electrolyte \checkmark
6.2 Charge can not be created or destroyed but can only be transferred from one object to another $\checkmark \checkmark$
(2)

6.3

6.4 Touching between the 2 objects \checkmark in order for the electrons to move \checkmark from the sphere to the rod

Question 7

$$
\begin{aligned}
& 7.1 \quad \frac{1}{R_{P}}=\frac{1}{24}+\frac{1}{12}=\frac{3}{24} \\
& \frac{1}{R_{P}}=\frac{24}{3}=8 \Omega \\
& R_{T}=8+2=10 \Omega \\
& \text { 7.2 } I=\frac{V}{R} \\
& I=\frac{20}{10} \\
& I=2 A \quad \checkmark \\
& 7.3 \quad \begin{array}{rlr}
V & =I R & \checkmark \\
V & =(2)(2) & \checkmark \\
& & =4 V \\
& \checkmark
\end{array} \\
& 7.4 \quad V_{3}=20-4 \quad \checkmark \\
& V_{3}=16 \mathrm{~V} \quad \checkmark \\
& \text { 7.5 } \quad I=\frac{V}{R} \\
& I=\frac{16}{24} \\
& I=0.33 A \quad \checkmark
\end{aligned}
$$

7.6 DECREASE

Question 8

8.1.1
8.1.2
$29 \checkmark$
8.1.3

Helium \checkmark
8.1.4
$16 \checkmark$
8.1.5 $16 \checkmark$
8.1 .6
$18 \checkmark$
8.2.1

D
8.2.2

C
8.2.3
8.2.4
8.2.5

E
8.2.6

F
8.3 Heterogeneous. \checkmark
8.4a Element that has the same atomic mass but different mass number OR

An element with the same number of protons but different number of neutrons.
b. relative atomic mass $=\underline{(68.9257 \times 60.4 \%})+(70.9249 \times 39,6) \checkmark=69,7174 \checkmark$ $60.4+39,6$
Gallium \checkmark
8.5.1 $\mathrm{H}_{2} \mathrm{~S} \checkmark$
8.5.2 $\mathrm{NaOH} \checkmark$
8.5.3 $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \checkmark$

Question 9

9.1

b) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4} \checkmark \checkmark$
c) $\quad[\mathrm{Ne}] 3 s^{2} 3 p^{4} \checkmark \checkmark$

9,2 a) $2000 \mathrm{~kJ} / \mathrm{mol} \checkmark$
b) Generally increases across a period \checkmark and decreases down a group.
c) Boron's electrons occur at higher energy levels and are therefore further away from the nucleus \checkmark therefore it requires less energy to remove the electron \checkmark as opposed to berylium which occurs at a lower energy level and therefore closer to the nucleus and therefore harder to remove the first electron. \checkmark (Add energy level diagrams to emphasise point) $\checkmark \checkmark$

Question 10
10.1 The measure of the average kinetic energy of the particles $\checkmark \checkmark \checkmark$
10.2 Melting - the phase changes from solid to liquid $\checkmark \checkmark$ Boiling - the (phase) changes from liquid to gas (when the internal vapour pressure = external atmospheric pressure.) $\checkmark \checkmark$
(4)
10.3 Exo: energy released more than energy absorbed

Thus: Energy transferred = energy released - energy absorbed \checkmark (or swopped) $818=$ energy released $-2648 \checkmark$ Energy released $=818+2648$

$$
\begin{equation*}
=3466 \mathrm{~kJ} \text { (unit must be there) } \checkmark \tag{3}
\end{equation*}
$$

10.4

10.5 The temperature is constant: particles move out of their positions, that takes up energy. \checkmark Then temp. rises because particles move faster (higher average E_{k}) in the liq phase. \checkmark (2)

Question 11

11.2 Covalent
11.3 Polar
11.5 H
$\stackrel{H}{\mathrm{H}-\mathrm{C}_{-} \mathrm{H}}$
H
(1.6
11.6 Dispersion $\checkmark \checkmark$ (if van der waals \checkmark)
11.7 Hydrogen bonding
$11.8 \mathrm{SnH}_{4}$ is larger or CH_{4} is smaller
11.9

$: \ddot{O}+2 e^{-} \longrightarrow\left[: \ddot{O_{\bullet}} \dot{x}\right]^{2-} \quad \checkmark \checkmark$
$2 \mathrm{Li}^{1+}+\left[: \ddot{Q_{\bullet}} \dot{\times}\right]^{2-} \longrightarrow \mathrm{Li}_{2} \mathrm{O} \quad \checkmark \checkmark$
11.10 Metallic \checkmark

