ALEXANDER ROAD HIGH SCHOOL

PHYSICAL SCIENCES Paper 1 Physics

PE

GRADE 10

Instructions

- The question paper consists of 8 questions.
- Answer all the questions.
- Answer section A on the answer sheet provided.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to two (2) decimal places where necessary.
- A formula sheet has been provided on the back of the answer sheet.
- A list of physical constants has been provided at the end of the question paper.

SECTION A

- Answer on the answer sheet -

QUESTION 1: Multiple choice

Four possible options are provided as answers to the following questions. Each question has only 1 correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (1.1-1.7) on the answer sheet.
1.1 Which of the lists below consists of only vector quantities?
A. Weight, mass, velocity
B. Force, weight, displacement
C. Acceleration, velocity, distance
D. Force, direction, pressure

The graph alongside shows the displacement vs time graph for an object moving in a straight line in the positive direction.

Use this graph to answer the next two questions.

1.2 The object is travelling
A. forwards for the first 6 seconds and backwards for the next 3 seconds.
B. speeding up for the first 6 seconds and slowing down for the next 3 seconds.
C. is stationary after 9 seconds.
D. both B \& C correct.
1.3 The corresponding velocity time graph is
A.

$\begin{array}{llll}3 & 6 & 9 & 12\end{array}$
t (s)

1.4 Consider a pendulum swinging in a vacuum.

At which position is the mechanical energy maximum?
A.at A
B. at B
C. at C
D. At all positions.

1.5 The correct order for increasing wavelength of electromagnetic waves is
A. radio waves, infrared, blue light, gamma rays.
B. x-rays, Ultraviolet, Infrared, microwaves.
C. gamma rays, microwaves, ultraviolet, radio waves.
D. TV waves, red light, green light, blue light.
1.6 The equivalent unit for a volt is:
A. joule per coulomb
B. ampere per ohm
C. joule per ampere
D. coulomb per second
1.7 All light bulbs are the same in the following circuits. In which circuit will the ammeter reading be biggest

QUESTION 2 (Vectors):

Sipho walks (from A) around the north side of a lake to meet a friend with his boat (at B).
He walks 300 m north then 300 m east \& then 600 m on a bearing of 135° in 10 minutes.
2.1 Define resultant vector.

2.2 Determine by accurate scaled diagram what his final displacement is from A to B. (Use scale $1 \mathrm{~cm}: 10 \mathrm{~m}$)
2.3 On what bearing must they paddle back to where Sipho started if they decided to go in the boat?
2.4 Calculate Sipho's average speed when walking around the lake from A to B.

QUESTION 3 (Motion):

Two vehicles P and Q are approaching a traffic light intersection at $20 \mathrm{~m} . \mathrm{s}^{-1}$ The light turns orange when they are 30 m from the intersection.
Vehicle P puts on its brakes and slows down to stop at the intersection.
Vehicle Q accelerates at $4 \mathrm{~m}^{-2}$ - through the intersection for 3 seconds before continuing at a constant velocity.

3.1 Define velocity.

3.2 Convert $20 \mathrm{~m} . \mathrm{s}^{-1}$ to km.h ${ }^{-1}$
3.3 Calculate the acceleration of vehicle P.
3.4 Calculate the final velocity of vehicle Q .
3.5 Sketch the velocity-time graphs for both vehicles on the same set of axes. Label the relevant velocity and time values.

QUESTION 4 (Energy):

A cyclist travels at $6 \mathrm{~m} . \mathrm{s}^{-1}$ just before going down a dip in the road. She free wheels down the dip and up the other side until she stops. Her mass and bicycle combined are 60 kg .
Assume there is no friction.
Use energy principles to calculate the answers in 4.2 and 4.3

4.1 Define gravitational potential energy.

4.2 What is the fastest speed she reaches at the bottom of the dip?
4.3 Calculate the height she will reach on the other side when she stops.
4.4 What is the name of the principle used in the calculation above?

QUESTION 5 (Waves):

5.1 The speed of sound is $320 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. A person counts 5 seconds between seeing lighting and hearing the thunder. How far away is the storm?
5.2 Given the snapshot of a transverse wave below, answer the following questions. Use the diagram on the answer sheet to answer 5.2.2.

5.2.1 Define the term wavelength.
5.2.2 On top of the diagram draw a wave with twice the amplitude and twice the period. Use the diagram on the answer sheet.
5.2.3 If it takes the crest at $\mathbf{X} 6$ seconds to move to position \mathbf{Y} calculate:
a) the frequency of the wave.
b) The speed of the wave.
5.3 A fishing boat uses echolocation to detect schools of fish.
If the speed of sound in water is $1200 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and it takes 0,4 seconds for the echo to be heard, how deep is the school of fish below the boat?

QUESTION 6 (Light):

The wavelength of red light is 300 nm .

6.1 Calculate its frequency.

6.2 What is the name of the "package of energy" which red light is made of?
6.3 Calculate the energy of one of these 'packages of energy'.

QUESTION 7 (Electrostatics):

Two spheres of identical size, and on insulated stands, have the charges $Q_{M}=+3 n C$ and $Q_{N}=-5 n C$ respectively. They are a short distance apart.

7.1.1 State the principle of "conservation of charge".
7.1.2 How many electrons are in excess or shortage on sphere M ?
7.1.3 State whether they were transferred TO or FROM sphere M.
7.2.1 The two spheres are now brought together so that they touch and then are separated again. What is the final charge on sphere N ?
7.2.2 In which direction did the charges move between the spheres, from M to N or from N to M ?

QUESTION 8 (Circuits):

In the circuit alongside: $\mathrm{R}_{1}=4 \Omega$ and $\mathrm{R}_{2}=2 \Omega$.
When both switches, S_{1} and S_{2}, are closed, $\mathrm{V}_{2}=4 \mathrm{~V}$.
8.1 Define the term current strength.
8.2 Calculate the effective parallel resistance.

8.3 Calculate the reading on ammeter A_{2} when both switches are closed.
8.4 Calculate the current through the light bulb when both switches are closed.
8.5.1 What happens to the brightness of the bulb when switch S_{2} is opened? Write only: INCREASES, DECREASES, STAYS THE SAME or GOES OUT.
8.5.2 Explain your choice in 8.5.1 above.
8.6 In an experiment the following circuit was used. The data measured is shown in the table and plotted on the graph.

Current (A)	Voltage (V)
0,12	0,6
0,26	1,3
0,34	1,7
0,40	2,0

8.6.1 Write an investigative question for this experiment.
8.6.2 Determine the gradient of the graph.
8.6.3 What does the gradient of the graph represent?

List of Physical Constants

Name	Symbol	Value
Acceleration due to gravity	g	$9,8 \mathrm{~m} . \mathrm{s}^{-2}$
Speed of light in a vacuum	c	$3,0 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}$
Planck's constant	h	$6,63 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
Charge on electron	e	$-1,6 \times 10^{-19} \mathrm{C}$
Electron mass	m_{e}	$9,11 \times 10^{-31} \mathrm{~kg}$

MEMO Gr10 Nov 2021

1.1 B 1.2 D 1.3 A 1.4 D 1.5 B 1.6 A 1.7 D
2.1 Resultant - is a single vector that has the same effect of two or more vectors.
2.2

$R=735 \pm 5 m$ bearing $100^{\circ} \pm 2^{0}$
2.3 Back bearing $=90+9,7+180=279,7^{\circ} \checkmark \quad 280^{\circ} \pm 2^{0}$
2.4 Speed $=$ dist/time $\checkmark=1200 /(10 \times 60) \checkmark=2 \mathrm{~m} . \mathrm{s}^{-1} \checkmark$
3.1 $\mathrm{Vel}=$ rate of change \checkmark of position \checkmark
$3.220 \times 3,6=72 \mathrm{~km} . \mathrm{h}^{-1} \checkmark$
$3.3 \quad v_{f}^{2}=v_{i}^{2}+2 a \Delta x \quad \checkmark$
$0=20^{2}+2 \cdot a \cdot 30 \checkmark$
$a=400 / 60=-6,67 \mathrm{~m} . \mathrm{s}^{-2} \checkmark$ slowing down $/$ deceleration $/$ positive in reverse
$3.4 \quad v_{f}=v_{i}+a t \checkmark=20+4 \times 3 \checkmark=32 \mathrm{~m} . \mathrm{s}^{-1} \quad \checkmark$

4.1 $\mathrm{Ep}=$ is the energy of an object due to its position \checkmark in a gravitational field \checkmark
4.2 E mech top $=\mathrm{E}$ mech bottom \checkmark

Top: $E p+E k=m g h+1 / 2 m v^{2}=60 \times 9,8 \times 3+1 / 2 \times 60 \times 6^{2}=1764+1080=2844 \mathrm{~J} \checkmark \checkmark$
Bottom Ep $+E k=0+1 / 2 x 60 x v^{2}=2844$

$$
\begin{aligned}
& \therefore \mathrm{v}^{2}=2844 / 30=94,8 \\
& \therefore \mathrm{v}=\sqrt{ } 94,8=9,74 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \checkmark
\end{aligned}
$$

$\square \square \square E p+E k$ top other side $=2844=m g h+0 \checkmark$
$\therefore 60 \times 9,8 \times \mathrm{h}=2844 \checkmark \therefore \mathrm{~h}=2844 /(69 \times 9,8)=4,84 \checkmark$
4.4 Conservation of mechanical energy \checkmark
5.1 Dist $=$ Speed \times time $\checkmark=320 \times 5 \checkmark=1600 \mathrm{~m} \checkmark$
5.2.1 Wavelength $=$ shortest distance between two points in phase $\checkmark \checkmark$ (2 or 0$)$
5.2.2 $2 x A m p \checkmark 2 x$ Period \checkmark
5.2 .3 a) 3 waves in 6 sec therefore 1 wave every $2 \mathrm{~s} f=1 / T \quad \checkmark=1 / 2=0,5 \mathrm{~Hz} \checkmark \checkmark$
b) 3 wavelengths $=12 \mathrm{~m}$ in $6 \mathrm{~s}=2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ OR Dist/time $\checkmark=12 / 6 \checkmark=2 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$
5.3 Dist $=$ speed \times time $\checkmark=1200 \times 0.2 \checkmark=240 \mathrm{~m} \checkmark$ deep (or use $0,4 \mathrm{sec} \&$ halve total distance)
$6.1 \mathrm{c}=\mathrm{f} \lambda \therefore \mathrm{f}=\mathrm{c} / \lambda \quad \checkmark=3 \times 10^{8} / 300 \times 10^{-9} \checkmark=1 \times 10^{15} \mathrm{~Hz} \checkmark$
6.2 Photon \checkmark
6.3 E=hf $\checkmark=6,6 \times 10^{-34} \times 10^{15} \checkmark=6,6 \times 10^{-19} \mathrm{~J} \checkmark$
7.1.1 Conservation charge - total charge in an isolated system remain constant $\checkmark \checkmark$
7.1.2 $n=Q / q_{\mathrm{e}} \checkmark=3 \times 10^{-9} / 1,6 \times 10^{-19} \quad \checkmark=1,875 \times 10^{10} \quad \checkmark$ electrons
7.1.3 electrons rubbed FROM sphere $\mathrm{M} \checkmark$
7.2.1 $\mathrm{Q}=\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right) / 2 \checkmark=(+3-5) / 2 \quad \checkmark=-1 \mathrm{nC} \checkmark$
7.2.2 electrons transferred from N to $M \checkmark$
8.1 Current strength: rate of flow of charge $\checkmark \checkmark$ (2 or 0)
$8.21 / R_{p}=1 / r_{1}+1 / r_{2} \checkmark=1 / 4+1 / 2=3 / 4 \checkmark$
$\therefore R_{p}=4 / 3=1,333 \Omega \checkmark$
8.3 V=IR $\checkmark 4=1 \times 2 \checkmark \therefore I=4 / 2=2 A \checkmark$

$\therefore \mathrm{I}_{\text {bub }}=2+1=3 \mathrm{~A} \checkmark$

8.5.1 DIMMER \checkmark

8.5.2 Resistance increases \checkmark (removing a pathway) \therefore current decreases $\checkmark \therefore$ DIMMER
8.6.1 How does the changing current \checkmark affect the voltage \checkmark across the resistor? (must be a question that contains the 2 variables)
8.6.2 $\Delta \mathrm{V} / \Delta \mathrm{I}=2 / 0,4 \checkmark=5 \checkmark$
5.6.3 Resistance \checkmark in ohms

