

ALEXANDER ROAD HIGH SCHOOL

November 2021 PHYSICAL SCIENCES ASSESSMENT PAPER 2

2 HOURS

JA

GRADE 10

TOTAL = 100

Instructions:

- The question paper consists of 8 questions.
- Answer all the questions.
- Answer section A on the answer sheet provided AND section B on folio sheets.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to two (2) decimal places where necessary.
- A formula sheet has been provided on the back of the answer sheet.
- A periodic table has been provided at the end of the question paper.

SECTION A

(answer on the answer sheet)

QUESTION 1:

Four possible options are provided as answers to the following questions. Each question has only one correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (1.1 - 1.7) on the answer sheet.

- 1.1 A mixture is defined as...
 - A. the combination of two or more pure substances that are bonded together.
 - B. the combination of two or more pure substances that are not bonded together.
 - C. the combination of two or more pure substances in a fixed ratio.
 - D. any substance that cannot be separated by physical methods.
- 1.2 Which one of the following substances is a pure substance?
 - A. 0₂
 - B. Air
 - C. Sand
 - D. Sea water

1.3 Which one of the following is correct regarding an atom of magnesium (Mg)?

	Number of Core Electrons	Number of Valence Electrons
Α.	24	12
В.	12	2
C.	12	0
D.	10	2

1.4 Which one of the following lists shows elements in the order of increasing atomic radius?

- A. C, N, O, F
- B. 0, N, P, Na
- C. Be, Mg, Al, Ga
- D. Xe, Kr, Ar, Ne

1.5 Which one of the following statements is FALSE?

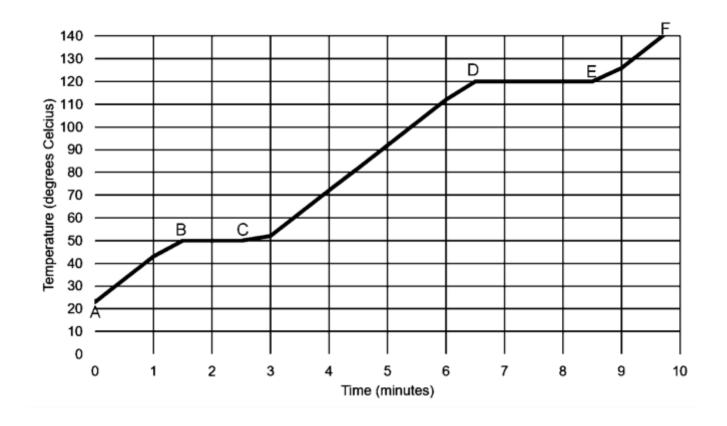
A chemical change is a change in which...

- A. new substances are formed.
- B. energy changes are relatively large.
- C. mass is conserved.
- D. the number of atoms change.

1.6 The chemical formula of iron (III) sulphate is...

- A. FeS
- B. FeSO₄
- C. $Fe_2(SO_4)_3$
- D. $Fe_3(SO_4)_2$

1.7 Which one of the following pure substances has the greatest number of particles?


- A. 50 g aluminium foil
- B. 50 g copper wire
- C. 100 g silver coin
- D. 150 g gold ring

SECTION B

(answer on folio paper)

QUESTION 2:

The heating curve of substance X is given below.

2.1	Define the term <i>boiling point</i> .	(2)
2.2	Write down the boiling point of substance X.	(1)
2.3	Give the phase(s) of substance X…	
2.3.1	from A to B.	(1)
2.3.2	from D to E.	(1)
2.4	Give the name of the phase change that occurs between B and C.	(1)

2.5 Substance X – like all substances – is made up of tiny, microscopic particles. Use the kinetic molecular theory (KMT) to explain what is happening to substance X AND therefore what is happening with the particles of substance X from...

2.5.1	C to D.	(2)
2.3.1	C 10 D.	(2)

2.5.2 D to E.

[11]

(3)

QUESTION 3:

Consider the following atoms/ions:

cart	oon-12	S ^{2–}	$^{112}_{47}$ X	¹⁰ ₅ B	^y ₅ B	⁶⁵ ₂₉ Cu ⁺	
3.1 3.2		Aufbau diagra full <i>sp</i> -notation	am for carbon-12 n for S ²⁻ .	2.			(3) (3)
3.3.1	Define th	e term <i>isotope</i>	es.				(2)
3.3.2	•	e periodic tabl e isotope ¹¹² ₄₇ X	e, write down the belongs.	e NAME or SY	MBOL of the ele	ement to	(1)
3.3.3			on is ${}^{10}_{5}B$. The operation of the pron's average at				(4)
3.4.1	Define th	e term <i>ion</i> .					(2)
3.4.2	How mar	iy protons, ne	utrons and electi	ons are there i	n ⁶⁵ 20u ⁺ ?		(3)
							[18]

QUESTION 4:

Alkali Metal	First Ionisation Energy (kJ.mol ⁻¹)
Lithium (Li)	526
Sodium (Na)	504
Potassium (K)	425
Rubidium (Rb)	410
Caesium (Cs)	380

The first ionisation energies for the alkali metals (group 1) are given in the table below.

4.1	Define the term first ionisation energy.	(2)
4.2	Explain why the first ionisation energy decreases moving down the group.	(2)
4.3	Would the first ionisation energy of chlorine be GREATER THAN, LESS THAN or EQUAL TO the first ionisation energy of sodium? Give a (single sentence) reason for your answer.	(2)
4.4	The second ionisation energy of lithium is 7 296 kJ.mol ⁻¹ . Why is the second ionisation energy of lithium significantly greater than its first ionisation energy?	(2)

[8]

QUESTION 5:

Methane (CH₄) is a covalently-bonded compound found in natural gas.

5.1	Define the term covalent bond.	(2)
5.2	Draw the Lewis diagram of methane (CH_4) .	(2)
5.3	Is the C – H bond in methane POLAR or NON-POLAR?	
	Support your answer with an appropriate calculation.	(2)

In colder parts of the world (such as Europe), natural gas is used as a source of energy for central heating in homes. The methane in the natural gas burns in oxygen according to the following chemical equation:

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

5.4	Give the Couper notation of CO_2 .	(2)
5.5	Balance the chemical equation.	(2)
5.6	Is this reaction EXOTHERMIC or ENDOTHERMIC? Briefly explain.	(2) [12]
		[12]

QUESTION 6:

Mixing a clear solution of potassium iodide with a clear solution of lead (II) nitrate results in the formation of a yellow solid and a clear solution containing only potassium nitrate.

6.1	Is this an example of a PHYSICAL or CHEMICAL change?	(1)
6.2	Write down the formula of	
6.2.1	Potassium iodide.	(2)
6.2.2	Lead (II) nitrate.	(2)
6.3	What type of bonding exists in potassium iodide?	(1)
6.4	Predict the NAME or FORMULA of the yellow solid which formed.	(2)
		[8]

QUESTION 7:

Ammonia (NH_3) is an important molecule used to make fertilizers. In a factory, nitrogen and hydrogen gas are reacted to produce ammonia according to the following balanced chemical equation:

 $\mathrm{N_2}\,\,(g) \ + \ 3 \ \mathrm{H_2}\,\,(g) \ \rightarrow \ 2 \ \mathrm{NH_3}\,\,(g)$

7.1	Define the term one mole.	(2)
7.2	If 35 g of N_2 reacts, calculate:	
7.2.1	The number of moles of N_2 which react.	(3)
7.2.2	The number of molecules of H_2 which react.	(4)
7.2.3	The mass of NH_3 produced.	(4)
7.3	One of the fertilizers made from ammonia is $(NH_4)_2HPO_4$ (diammonium phosphate). Calculate:	
7.3.1	The molar mass of $(NH_4)_2HPO_4$.	(2)
7.3.2	The concentration of 10 g of $(NH_4)_2$ HPO ₄ dissolved in 500 cm ³ of water.	(4)

[19]

QUESTION 8:

Hydrogen gas is produced by reacting zinc metal with hydrochloric acid according to the following balanced chemical equation:

$$\operatorname{Zn}(s) + 2 \operatorname{HC}\ell(\operatorname{aq}) \rightarrow \operatorname{ZnC}\ell_2(\operatorname{aq}) + \operatorname{H}_2(g)$$

8.1	Write down the phase of $ZnC\ell_2$.	(1)
8.2	Use the metallic bonding model to explain why Zn (s) is a moderately good conductor of electricity.	(2)

- 8.3 If 800 cm³ of 0,25 mol.dm⁻³ HC ℓ solution reacts completely with excess zinc, calculate the volume of H₂ produced at standard temperature and pressure. (5)
- 8.4 The reaction in question 8.3 is repeated with the temperature at 100°C.
- 8.4.1 How would the volume of H₂ calculated in question 8.3 change?
 Write only INCREASES, DECREASES or REMAINS THE SAME. (1)
- 8.4.2 Briefly explain your answer to question 8.4.1. (1)

TOTAL SECTION B = [86]