ALEXANDER ROAD HIGH SCHOOL

SEPTEMBER 2021
PHYSICAL SCIENCES CONTROL TEST
50 MINUTES
JA
GRADE 10 (blue) MEMO
TOTAL $=40$
$1.1 B \quad \checkmark \checkmark$
$1.2 C \quad \checkmark \checkmark$
1.3 A $\checkmark \checkmark$
1.4 A $\checkmark \checkmark$
2.1 A vector is a (physical) quantity with magnitude and direction. $\checkmark \checkmark$ (2 or 0)
2.2 Displacement.
$2.3 \quad R^{2}=12^{2}+5^{2} \checkmark$
$R=13 \mathrm{~km} \checkmark$
$\tan \theta=\frac{5}{12} \checkmark$
$\theta=22,62^{\circ} \checkmark$
$\therefore R=13 \mathrm{~km}$ bearing $67,38^{\circ}$ (OR at $22,62^{\circ}$ to the horizontal) \checkmark
3.1 A single vector having the same effect as two or more vectors together. $\checkmark \checkmark$ (2 or 0)
$3.2 \quad \checkmark \checkmark \checkmark$ One mark for each vector drawn with the correct magnitude, direction AND labelled. Subtract one mark if NOT drawn tail-to-head.
\checkmark Resultant correctly drawn with magnitude: $1660 \mathrm{~N} \pm 40 \mathrm{~N}(8,3 \mathrm{~cm} \pm 0,2 \mathrm{~cm})$
\checkmark Direction: bearing 315° OR 135° to the horizontal $\left(\pm 2^{\circ}\right)$ OR North West.
Note:

- If 1 vector is wrong: + mark (MAX: 4/5).
- If 2 vectors are wrong: stop marking (MAX: $1 / 5$).
- If R is correctly drawn but no magnitude is written: give MAX 4/5.
3.3 YES. \checkmark +marking from 3.2
$3.4 \quad 1660 \mathrm{~N} \checkmark$ +marking from 3.2
bearing 135° OR 315° to the horizontal OR South East $\checkmark+$ marking from 3.2
4.1 The rate of change of position. $\checkmark \checkmark$ (2 or 0).
$4.2 \quad 20 \mathrm{~m} \checkmark$ right. \checkmark
4.3.1 $\quad v=\frac{x}{\Delta t} \checkmark$
$v=\frac{15+35}{25} \checkmark \quad\left(\frac{50}{25}\right)$
$v=2 m \cdot s^{-1} \checkmark$
4.3.2 $v=\frac{\Delta x}{\Delta t} \checkmark$
$v=\frac{(-20)-(-40)}{25} \checkmark^{+ \text {marking from } 4.2} \quad\left(\frac{20}{25}\right) \quad$ (taking to the left as positive) $v=0,8 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to the left \checkmark
$5.1 \quad a=\frac{\Delta v}{\Delta t} \checkmark$
$a=\frac{(22)-(100)}{3} \checkmark \quad\left(\frac{-78}{3}\right) \quad$ (taking to the right as positive)
$a=(-) 26 \mathrm{~m} \cdot \mathrm{~s}^{-2} \checkmark$

Note:
$\Delta v=100-22$ is WRONG even though it will give the correct magnitude of the acceleration. MAX: 1/3.
5.2 To the left.

