10 Science June 2022 P2 Memo

- 1.1 $A \checkmark \checkmark$ 1.2 $B \checkmark \checkmark$ 1.3 $C \checkmark \checkmark$ 1.4 $C \checkmark \checkmark$
- 2.1 Mixture <u>impure</u> and different substances blended in <u>any proportion/ratio</u> \checkmark Compound – <u>pure</u>, and two or more elements chemically bonded in <u>fixed ratio</u> \checkmark

2.2.1 E \checkmark 2.2.2 H \checkmark 2.2.3 D \checkmark 2.2.4 F \checkmark 2.2.5 B \checkmark 2.2.6 J \checkmark

- 3.1 What is the relationship between the temperature and time for the cooling of stearic acid?
- 3.2 Temp√
- 3.3 solidification (or freezing) \checkmark or liquid \rightarrow solid
- 3.4 The particles <u>release energy</u> √<u>as they move closer</u> together and this causes the potential energy of the particles to decrease and not the kinetic energy (which will cause the temp. to drop) √ OR E_k remains constant
- 3.5 Temp decrease, thus decrease the average kinetic energy of the particles ✓, thus particles move slower ✓ OR particles move closer together OR vibrates about fixed position.
- 3.6 67-68√
- 3.7 solid√
- 4.1.1 Dalton √
- 4.1.2 Rutherford ✓
- 4.2 $1s^2 2s^2 2p^6 3s^2 3p^6 \checkmark \checkmark$
- 4.3.1 Isotopes are <u>atoms of the same element with different number of neutrons</u> ✓ (or mass number) but same number of <u>protons</u> ✓ (or atomic number) (the first part needs to make sense)
- 4.3.2 RAM = $\frac{92,2297 \times 28+4,6832 \times 29+3,0872 \times 30}{100}$ = 28,1086 (g. mol⁻¹) \checkmark (if wrong unit 2/2)

4.3.3 3p (1) (1) (2) 35 (1)

61)

 \checkmark (labels) \checkmark (correct filling)

2P (1) (1) 25 (1)

- 5.1.1 sulfur ✓
- 5.1.2 argon √
- 5.1.3 boron √
- 5.1.4 nitride, oxide, flouride \checkmark (names changed) and sodium ion, magnesium ion, aluminium ion \checkmark

(if N^{3-} , O^{2-} , F^{-} (any 1) and Na^{+} , Mg^{2+} , AI^{3+} (any 1) given, then 1/2)

5.1.5 aluminium √

5.2.1	The energy required per mole of substance to remove an electron from the atom \checkmark
-------	--

5.2.2 (a) low lonisation energy $\checkmark \checkmark$

(b) very high IE, / not removing electron easily $\checkmark \checkmark$

- 5.2.3 the second electron will have to be <u>removed from a filled energy level</u>, electrons are <u>attracted strongly</u> to the positive nucleus $\checkmark \checkmark$
- 6.1 The <u>overlapping of half-filled orbitals</u> in the non-metals resulting in the <u>sharing of</u> <u>electrons</u> to form a molecule $\checkmark \checkmark$
- 6.2.1 $(\text{lone pairs}) \checkmark (\text{bond pairs})$
- 6.2.2 H: \dot{O} : $\checkmark \checkmark$ (di) (Accept if linear shape; only in gr. 10)
- 6.2.3 $H \stackrel{\bullet}{\star} \stackrel{\bullet}{P} \stackrel{\bullet}{\star} H \checkmark \checkmark (di)$

6.3.1 polar √

- 6.3.2 $\Delta EN = 0.9 \checkmark$: the CI atom attracts the bonding electrons more than H, asymmetric electron cloud \checkmark δ^+ H CI $\delta^- \checkmark$
- 6.4.1 attraction between the postive cations and the sea of delocalised (valence) electrons $\checkmark \checkmark$
- 6.4.2 delocalized valence electrons ✓ are free to move ✓ in a conductor (from high to low potential energy)
- 6.5 $K \rightarrow [K]^+ + e^- \checkmark$

 $F + e^- \rightarrow [F]^- \checkmark$

$$\mathsf{K}^{\bullet}\,\checkmark + \times \mathop{\mathsf{F}}_{\mathsf{xx}}^{\mathsf{xx}} \stackrel{\mathsf{xx}}{\checkmark} \stackrel{\mathsf{xx}}{\rightarrow} \, [\mathsf{K}]^{+} \left[\mathop{\star}\limits^{\bullet} \mathop{\mathsf{F}}_{\mathsf{xx}}^{\mathsf{xx}} \stackrel{\mathsf{}}{\rightarrow} \right]^{-} \,\checkmark$$

- 6.6.1 Na₂SO₄ √
- 6.6.2 (NH₄)₂CO₃ √
- 6.6.3 NO₂ √
- 6.7 $\Delta EN = 2,2$ which is more than $1,7. \checkmark$ The CI atom attracts the bonding electrons strongly, removing the e⁻ from K, to form CI⁻ and K⁺, which then attract each other \checkmark (with a Coulomb/electrostatic force.)
- 6.8 formula unit ✓ (or crystal lattice / ionic lattice)