10 Science June 2022 P2 Memo

1.1 $A \checkmark \checkmark 1.2$
$B \checkmark \checkmark 1.3$
$C \checkmark \checkmark$
1.4
$C \checkmark \checkmark$
2.1 Mixture - impure and different substances blended in any proportion/ratio \checkmark Compound - pure, and two or more elements chemically bonded in fixed ratio \checkmark
2.2.1
E \checkmark 2.2.2 H \checkmark 2.2.3
D \checkmark
2.2.4 F \checkmark
2.2.5 B \checkmark
2.2.6 J \checkmark
3.1 What is the relationship between the temperature and time for the cooling of stearic acid? \checkmark
3.2 Temp \checkmark
3.3 solidification (or freezing) \checkmark or liquid \rightarrow solid
3.4 The particles release energy \checkmark as they move closer together and this causes the potential energy of the particles to decrease and not the kinetic energy (which will cause the temp. to drop) \checkmark OR Ek remains constant
3.5 Temp decrease, thus decrease the average kinetic energy of the particles \checkmark, thus particles move slower \checkmark OR particles move closer together OR vibrates about fixed position.
3.6 67-68
3.7 solid \checkmark
4.1.1 Dalton \checkmark
4.1.2 Rutherford \checkmark
$4.2 \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark \checkmark$
4.3.1 Isotopes are atoms of the same element with different number of neutrons \checkmark (or mass number) but same number of protons \checkmark (or atomic number) (the first part needs to make sense)
4.3.2 $\mathrm{RAM}=\frac{92,2297 \times 28+4,6832 \times 29+3,0872 \times 30}{100}=28,1086\left(\right.$ g. $\left.\mathrm{mol}^{-1}\right) \checkmark \quad$ (if wrong unit $\left.2 / 2\right)$
4.3.3
$3 p$ 35 (17)
$2 p$ (1)
25 (11)
is (11)
(1) \bigcirc
(11) (11)
5.1.1 sulfur \checkmark
5.1.2 argon \checkmark
5.1.3 boron \checkmark
5.1.4 nitride, oxide, flouride \checkmark (names changed) and sodium ion, magnesium ion, aluminium ion
(if $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}$(any 1) and $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}$ (any 1) given, then $1 / 2$)
5.1.5 aluminium \checkmark
5.2.1 The energy required per mole of substance to remove an electron from the atom $\checkmark \checkmark$
5.2.2
(a) low Ionisation energy
(b) very high IE, / not removing electron easily $\checkmark \checkmark$
5.2.3 the second electron will have to be removed from a filled energy level, electrons are attracted strongly to the positive nucleus
6.1 The overlapping of half-filled orbitals in the non-metals resulting in the sharing of electrons to form a molecule $\checkmark \checkmark$
$: N:{ }_{0}^{x} N_{x}^{x}$
\checkmark (lone pairs) $\quad \checkmark$ (bond pairs)
6.2.2

$\checkmark \checkmark$ (di)
(Accept if linear shape; only in gr. 10)
6.2 .3

$\checkmark \checkmark$ (di)
H
6.3.1 polar \checkmark
6.3.2 $\Delta \mathrm{EN}=0,9 \checkmark$: the Cl atom attracts the bonding electrons more than H , asymmetric electron cloud $\checkmark \quad \delta^{+} \mathrm{H}-\mathrm{Cl} \delta^{-} \quad \checkmark$
6.4.1 attraction between the postive cations and the sea of delocalised (valence) electrons $\checkmark \checkmark$
6.4.2 delocalized valence electrons \checkmark are free to move \checkmark in a conductor (from high to low potential energy)
6.5
$K \rightarrow[K]^{+}+e^{-} \checkmark$
$\mathrm{F}+\mathrm{e}^{-} \rightarrow[\mathrm{F}]^{-}$

6.6.1 $\mathrm{Na}_{2} \mathrm{SO}_{4} \checkmark$
6.6.2 $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
6.6.3 $\quad \mathrm{NO}_{2}$
6.7 $\quad \Delta \mathrm{EN}=2,2$ which is more than 1,7. \checkmark The Cl atom attracts the bonding electrons strongly, removing the e^{-}from K , to form Cl^{-}and K^{+}, which then attract each other \checkmark (with a Coulomb/electrostatic force.)

