

ALEXANDER ROAD HIGH SCHOOL

PHYSICAL SCIENCES JUNE PAPER 2

June 2022

GRADE 10

1,5 HOURS TOTAL = 75

со

Instructions:

- The question paper consists of 6 questions.
- Answer all the questions.
- Answer section A on the answer sheet provided AND section B on folio sheets.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to at least two (2) decimal places where necessary.
- A periodic table has been provided on the back of the answer sheet.

SECTION A

(answer on the answer sheet)

QUESTION 1:

Four possible options are provided as answers to the following questions. Each question has only one correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (1.1 - 1.4) on the answer sheet.

- 1.1 Which one of the following is a mixture?
 - A. Air
 - B. A diamond
 - C. Distilled water
 - D. Sodium chloride
- 1.2 The type of bond between a metal and a non-metal atom when there is a large difference between electronegativities (more than 2):
 - A. covalent
 - B. ionic
 - C. metallic
 - D. dative covalent

- 1.3 When an atom X of an element in Group 2 reacts to become X^{2+} , the...
 - A. mass number of X increases.
 - B. atomic number of X decreases.
 - C. number of occupied energy levels decreases.
 - D. charge of the nucleus increases.

1.4 The number of neutrons in an atom of 11**Na**²³ is ...

- A. 1
- B. 11
- C. 12
- D. 23

TOTAL SECTION A = [8]

SECTION B (answer on folio paper)

QUESTION 2:

2.1 What is the difference between a mixture and a compound?

(2)

2.2 Choose an item from COLUMN B that best matches a description/item in COLUMN A.

Write only the letter (A-G) next to the question number (2.2.1 - 2.2.6).

COLUMN A	COLUMN B
2.2.1 Magnetic substance	A molecule
2.2.2 Chocolate	B compound
2.2.3 Good conductor of electricity	C nichrome
2.2.4 Increasing conductivity with	D copper
increasing temperature.	
2.2.5 Copper sulphate crystals	E cobalt
2.2.6 A non-metal element	F silicon
	G sodium chloride
	H mixture
	I sodium
	J sulphur

(6) [**8**]

QUESTION 3:

A part of the **cooling curve** of stearic acid is obtained after temperature changes were recorded over a period of 18 minutes. It is further given that the boiling point of this acid is 361°C and the melting point is 79°C.

Answer the questions below with reference to the graph.

. . . .

		[10]
3.7	What is the phase of the acid when this investigation is completed?	(1)
3.6	What is the temperature of the acid after 18 minutes?	(1)
	this change influence the movement of the particles? Fully explain.	(2)
3.5	The particles experience a decrease in temperature at 15 minutes. How does	
	temperature remains the same.	(2)
	does not change. Explain in terms of the kinetic molecular theory why the	
3.4	Although the acid is being cooled between 5 and 10 minutes, the temperature	
3.3	What phase change does the acid undergo between 5 and 10 minutes?	(1)
3.2	What is the dependant variable in this investigation?	(1)
3.1	write an investigative question for this investigation.	(2)

....

QUESTION 4:

4.1	The discovery of the atom followed a timeline with many contributers. Who		
	was responsible for the following contributions?		
4.1.1	The atom is a solid ball that forms the basic 'building block' of matter.	(1)	
4.1.2	The nucleus is the small positive part of the atom and the electrons are		
	contributing to the volume of the atom.	(1)	
4.2	Calcium has 20 protons.		
	Give the electron configuration (in sp notation) for the calcium ion.	(2)	
4.3.1	Define <i>isotopes</i> .	(2)	
4.3.2	Silicon is an element that exists in three main isotopes:		
	Si ₂₈ – 92,2297 %		
	Si ₂₉ – 4,6832 %		
	Si ₃₀ – 3,0872 %		
	Calculate the relative atomic mass of this silicon sample.	(2)	
4.3.3	Draw the Aufbau diagram for silicon.	(2)	
		[10]	

QUESTION 5:

5.1	Give the names of the element(s) on the periodic table which match the		
	following descriptions:		
5.1.1	In the 3 rd period with a similar valence shell electron configuration to oxygen.	(1)	
5.1.2	It has the highest ionization energy in the 3 rd period.	(1)	
5.1.3	The ionic form has a charge of 3+ and it is in the 2 nd period.	(1)	
5.1.4	A metal ion and a non-metal ion with the same electron configuration as		
	neon.	(2)	
5.1.5	The sp-notation of the element is: [Ne] 3s ² 3p ¹	(1)	

5.2	Study the table of first and second ionisation energies and answer the
	questions that follow.

		FIRST IONISATION ENERGY (kJ.mol ⁻¹)	SECOND IONISATION ENERGY (kJ.mol ⁻¹)	
	Li	520	7 297	
	Be	899	1 757	
	в	801	2 427	
	С	1 086	2 352	
	Ν	1 402	2 854	
	0	1 214	3 391	
	F	1 681	3 381	
	Ne	2 080	3 964	
5.2.1	Defin	e the term <i>ionisation energy</i> .	ovolain why:	(2)
J.Z.Z	0361		explain why.	
5.2.2(a)	meta	ls form cations easily.		(2)
5.2.2(b)	Neon	is chemically unreactive.		(2)
		· · · · · · · · · · · · · · · · · · ·		
5.2.3	Expla	ain why the second ionisation	energy of lithium is higher than it	ts first
	ionisa	ation energy.		(2)
				[14]

QUESTION 6:

6.1	Define covalent bonding.	(2)
6.2	Use Lewis diagrams to represent the molecules of:	
6.2.1	Nitrogen	(2)
6.2.2	HOCI	(2)
6.2.3	PH ₃	(2)
6.3.1	Is the bond in hydrogen chloride POLAR or NON-POLAR?	(1)
6.3.2	Explain your answer in 6.3.1, also show the Couper diagram of the molecule	
	and the partial charges on each atom.	(3)
6.4.1	Define metallic bonding.	(2)
6.4.2	Explain why metallic bonding is fundamentally responsible for electrical	
	conductivity.	(2)
6.5	Show the formation of potassium flouride by using Lewis structures.	(3)

6.6	Write the chemical formulas for the following compounds:	
6.6.1	Sodium sulphate	(1)
6.6.2	Ammonium carbonate	(1)
6.6.3	Nitrogen dioxide	(1)
6.7	Explain, by referring to electronegativities, why potassium chloride forms an	
	ionic bond.	(2)
6.8	Salts are not molecules. What is the arrangement of ions called?	(1)
		[25]
	TOTAL SECTION	N B = [65]