

FEBRUARY 2020ALEXANDER ROAD HIGH SCHOOLTIME: 45 min

Examiner: PE

PHYSICAL SCIENCE CONTROL TEST

TOTAL = 30

GRADE 10

Instructions

A periodic table has been provided on page 4 overleaf.

QUESTION 1: Multiple choice

Write just the question number and the letter corresponding to the best answer.

- 1.1 What method would be best to use to separate alcohol from water alcohol solution?
 - A. Filtration.
 - B. Evaporation.
 - C. Chromatography.
 - D. Distillation.
- 1.2 Brownian motion refers to
 - A. A dance invented by Robert Brown.
 - B. Diffusion of substances.
 - C. Random motion of smoke particles in air.
 - D. Kinetic energy of particles of a substance.
- 1.3 The element **Si** is classified as a:
 - A. Metal.
 - B. Non-metal
 - C. Metalloid
 - D. Radioactive substance

[2x3=6]

QUESTION 2:

Consider the following substances:

- A Muddy water.
- B Air.
- C Distilled water

For each state whether it is a pure substance or mixture. If it is a mixture state whether it is a heterogeneous or homogenous mixture. [3]

QUESTION 3:

In an experiment to investigate the cooling curve of a type of acid, data was collected and plotted on the graph shown.

- 3.1 Identify each of the following:
- 3.1.1 Independent variable?
- 3.1.2 Dependent variable?
- 3.1.3 Control variable?
- 3.2 What is the melting point of this acid?
- 3.3 How long from the time of the start of the measurement did it take for all the liquid to solidify? (1)

90

[5]

QUESTION 4:

Given the diagram of small particles with the KEY alongside of what they represent

Key			
Element	Chemical symbol	Picture of its atom	
oxygen	0	\bigcirc	
hydrogen	Н	•	

- 4.1 Does the diagram represent a pure substance or a mixture? (1)
- 4.2 Is this a homogenous or heterogeneous mixture?

(1) [2]

QUESTION 5:

Consider a substance like carbon dioxide that can exist in only **solid and gas** phases.

- 5.1 Solid CO₂ is called dry ice. Why does the mobile ice-cream vendor use dry ice and not ordinary ice to keep his ice-creams cold? (2)
- 5.2 What is the name given to the phase change from solid to gas? (1)
- 5.3 The heating curve of carbon dioxide is given below.

Give the phase of the carbon dioxide at QR **AND** ST respectively. (2)

[5]

QUESTION 6:

In the laboratory, water can be made to boil at less than 100°C (e.g. at 60°C).

6.1	Define the term <i>boiling point</i> .	(2)
6.2	What is the cause of the water boiling at less than 100°C in the laboratory?	(1)
6.3	At which of the following places will the boiling point be lowest: Port Elizabeth, Johannesburg, Table Mountain, Mt Everest?	(1) [4]

QUESTION 7:

7.1	Define the term <i>temperature</i> .	(2)
7.2	Explain, in terms of the particle model of matter, why evaporation causes cooling.	(3) [5]

[30]

MEMO

- 1.1 D√√
- 1.2 C√√
- 1.3 C ✓ ✓
- A Muddy water heterogenous mixture ✓
 B Air Homogenous mixture ✓
 C Distilled water pure ✓ substance (compound)
- 3.1.1 Time ✓
- 3.1.2 Temperature ✓
- 3.1.3 Amount/mass of substance \checkmark
- 3.2 MP = $70^{\circ}C \checkmark$
- 3.3 10 minutes ✓
- 4.1 Mixture ✓
- 4.2 Homogenous \checkmark they're in the gas phase.
- 5.1 Dry ice sublimes so no liquid ✓ slopping round.Water would make the ice-cream soggy ✓.
- 5.2 Sublimation ✓
- 5.3 QR Solid ✓ ST – Gas ✓
- 6.1 BP is the temperature \checkmark at which the vapour pressure of a liquid equals the atmospheric pressure \checkmark .
- 6.2 Atmospheric pressure is decreased \checkmark thus it boils at a lower temp. i.o.w. the vapour pressure reaches the same as the atmospheric pressure at a lower temp.
- 6.3 At high altitude. Mt Everest ✓
- 7.1 Temperature of a substance is a measure \checkmark of the average kinetic energy \checkmark of the particles making up the substance.
- 7.2 It takes energy \checkmark to evaporate. This energy comes from the liquid particles \checkmark remaining behind which are therefore cooler \checkmark
- OR

The fastest \checkmark moving particles at the surface bump out of the surface (evaporate) \checkmark and hence the slower moving particles remain behind \checkmark . Since they are slower, they have less kinetic energy & the liquid is cooler.