Gr 10 Physical Science November 2020 Memo

1.1 C
1.2 A
1.3 A
1.4 D
1.5 B
1.6 D
1.7 B
1.8 C
1.9 C
1.10 A
2.1 A vector is a physical quantity with both magnitude and direction.
2.2 $\quad F_{\text {weather }}=F_{\text {current }}+F_{\text {wind }}$

$$
=350+850 \checkmark
$$

$=1200 \mathrm{~N}$ east \checkmark (only correct answer $\checkmark \checkmark$)
2.3.1

2.3.2 $\quad \mathrm{FR}^{2}=3500^{2}+1200^{2}$
$\mathrm{F}_{\mathrm{R}}=3700 \mathrm{~N}$
$\tan \theta=\frac{1200}{3700}$
$\theta=17,969 \ldots$
Bearing $=180^{\circ}-\theta$
$=162,03^{\circ} \checkmark$
2.4 Do not sail due south, but more SE. \checkmark or Adjust his direction $32,03^{\circ}$ to the east etc.

3.1 The rate of change of position. $\checkmark \checkmark$

3.2270 km. $\mathrm{h}^{-1} \checkmark$

3.3

$V_{t}=V_{1}+a \Delta t \checkmark$
$10=75+$ a. $20 \checkmark$
$a=-3,25 \mathrm{~m} . \mathrm{s}^{-2}$ East \checkmark
or
$\mathrm{a}=3,25 \mathrm{~m} . \mathrm{s}^{-2} \mathrm{West}$
3.4
$v=\frac{\Delta x}{\Delta t}$
$10=\frac{500}{\Delta t}$
$\Delta t=50 s$
Total time $=50+20=70 \mathrm{~s}$
3.5

Axis labelled and units indicated

Shape of graph correct

Initial acceleration correct

Acceleration changes to $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at 20 s .

End time indicated.
3.6 The velocity of the aeroplane.
4.1 $E_{p}=m g h$
$E_{p}=0,150(9,8)(2,25) \mathrm{P}=3,31 \mathrm{~J} \checkmark$
$4.2 E_{k}=\frac{1}{2} m v^{2} \checkmark$
$E_{k}=\frac{1}{2}(0,150)(5)^{2} \checkmark$
$E_{k}=1,88 \mathrm{~J}$
$4.3 E_{M(A)}=E_{M(B)} \checkmark$

$$
\begin{aligned}
& 3,31+1,88=0+\frac{1}{2}(0,15) v^{2} \\
& v^{2}=69,2 \therefore v=8,32 m \cdot s^{-1}
\end{aligned}
$$

5.1.1 C \checkmark

5.1.2 F \checkmark

5.1.3 Any combination except A and E or B and F
5.2.1 (partial) destructive interference \checkmark
5.2 .2

$5.3 f=\frac{15}{60} \quad \vee=0,25 \mathrm{~Hz}$
5.4 distance $=$ speed x time \checkmark

Halve times \checkmark
Cliff 1: $340 \times 1=340 \mathrm{~m}$
Cliff 2: $340 \times 2=680 \mathrm{~m} \checkmark$
$340+680=1020 \mathrm{~m} \checkmark$
6.1 The net charge of an isolated system remains constant during any physical process. $\checkmark \checkmark$
6.2 $Q=\frac{Q_{A}+Q B}{2}$

$$
Q=\frac{6-3}{2} P=1,5 C
$$

$6.3 n=\frac{Q}{q_{e}} \checkmark$

$$
n=\frac{4,5}{1,6 \times 10^{-19}} P=2,81 \times 10^{19} e^{-}
$$

$7.1 \frac{1}{R_{p}}=\frac{1}{3}+\frac{1}{3} P=\frac{2}{3} P \therefore R_{p}=\frac{3}{2}$
$R=\frac{3}{2}+2=3,9 \Omega \checkmark$

$$
\begin{gathered}
7.2 \mathrm{~V}=\mathrm{IR} \checkmark \\
10=I .3,5 \checkmark \\
I=2,86 \mathrm{~A} \checkmark \\
7.3 \mathrm{~V}=\mathrm{IR} \checkmark \\
V=2,86(2) P=5,71 \mathrm{~V} P \\
7.4 \quad=I t \checkmark \\
Q=2,86(60)=171,6 \mathrm{C} \checkmark \\
V=\frac{W}{Q} \checkmark \\
5,71=\frac{W}{171,6} \checkmark \\
W=979,84 \mathrm{~J} \checkmark
\end{gathered}
$$

CHEMISTRY

8.1.1 11 protons $\left(p^{+}\right) \checkmark \quad 11$ electrons $\left(e^{-}\right)^{\checkmark} 12$ Neutrons $\left(n^{\circ}\right)^{\checkmark}$
8.1.2 charges \checkmark all correct or 0
$8.2(0.7 \times 35)+(0.3 \times 37)=35.6 \checkmark \checkmark \checkmark$
8.3.1 Ionisation energy (IE) = minimum energy to remove an electron \checkmark from a mole of atoms \checkmark.

8.3.2 IE for $\mathrm{Li}>\mathrm{IE}$ for $\mathrm{Na} \checkmark \checkmark$

8.3.3 As the alkali metal gets bigger it requires less energy \checkmark (easier) to remove an electron as it is further from the nucleus \checkmark and (it's shielded more by the lower energy level electrons).

9.1 .2
$\mathrm{Na} \bullet$
Na
9.1.3 ionic
9.1.4 metallic
9.1.5

a) oppositely charged ions
b) sea of delocalise electrons around positive kernels (ions) \checkmark
9.1.6 a) brittle, dissolves in water
$\checkmark \checkmark$
b) malleable, ductile, conductor $\checkmark \checkmark$
9.2

$$
\mathrm{H}_{\stackrel{\circ}{\circ} \stackrel{\circ}{\mathrm{O}} \stackrel{\circ}{\circ} \mathrm{O}}^{\mathrm{H}} \quad \text { (o rlinear) } \quad \mathrm{H}_{\bullet}^{\circ} \stackrel{\circ}{\mathrm{O}_{\circ 0}^{\circ}} \stackrel{\circ}{\circ} \mathrm{H}
$$

10.1.1 $\left(\mathrm{NH}_{4}^{+}\right)_{2} \mathrm{CO}_{3}^{=} \quad \checkmark$ correct ions \& \checkmark correct ratio
10.1.2 $\mathrm{Mg}\left(\mathrm{NO}_{3}^{-}\right)_{2}$
10.1.3 $\mathrm{H}_{2} \mathrm{~S}$
10.2 Iron (III) sulphate
10.3.1 $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \checkmark \checkmark$ (right or wrong, ie. 2 or 0)
10.3.2 $\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \checkmark \checkmark$
10.4 $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$ reagents \checkmark products \checkmark balanced \checkmark
11.1 The amount of substance with the same number of particles \checkmark as there are atoms in 12 g of pure ${ }^{12} \mathrm{C} \checkmark$ (isotope).
11.2.1 Hydrochloric acid \checkmark
11.2.2 $\quad 2 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Mg} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{MgCl}_{2 \text { (aq) }}$
mole ratio: $2: 1 \rightarrow 1: 1$
$\mathrm{Mg}: \quad n=\frac{m}{M}=\frac{13}{24}=0.542 \mathrm{~mol} \cong 0.54 \mathrm{~mol} \checkmark$
$\mathrm{MgCl}_{2}: \quad \mathrm{M}=24+2(35.5)=95 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \checkmark$
$n=0.54 \mathrm{~mol}=\frac{m}{M}=\frac{m}{95} \quad \therefore m=n \cdot M=0.54 \times 95 \sqrt{ }=51.3 \mathrm{~g} \sqrt{ }$
11.2.3 $\quad \mathrm{H}_{2}: n=0.54 \mathrm{~mol}=\frac{v}{V_{m}} \sqrt{ }=\frac{v}{22.4} \quad \therefore v=n \cdot V_{m}=0.54 \times 22.4 \sqrt{ }=12.096 \cong 12.1 \mathrm{dm}^{3} \sqrt{ }$
11.2.4a) STP $=$ Std Temp \& Press $\underline{\checkmark}$
11.2.4b) because a change in temp and/or pressure affects the volume \checkmark
11.3 $\% M g=\frac{24}{95} \times \frac{100}{1} \sqrt{ } \sqrt{ }=0.2526 \times 100=25.26 \cong 25.3 \% \sqrt{ }$ (accept 1 decimal $)$

