## Gr11 June 2022 Exam P1 Memo

| 1.1 | A | 1.6  | D |          |
|-----|---|------|---|----------|
| 1.2 | В | 1.7  | В |          |
| 1.3 | D | 1.8  | С |          |
| 1.4 | D | 1.9  | D |          |
| 1.5 | В | 1.10 | С | (10 x 2) |
|     |   |      |   |          |

2.1 The force that <u>opposes</u> the <u>tendency of motion</u> of a <u>stationary</u> object relative to the surface. (2)

## 2.2



2.3

$$f = F_{g\parallel} \checkmark$$

$$f = 23(9,8) \sin 30^{\circ} \checkmark$$

$$f = 112,7 N \checkmark$$
(3)

2.4

$$N = F_{g\perp}$$
  $\checkmark$   
 $N = 23(9,8) \cos 30^{\circ}$   $\checkmark$   
 $N = 195,20 \dots N$ 

$$f = \mu N \qquad \checkmark 
112,7 = \mu \ 195,20 \dots \qquad \checkmark 
\mu = 0,58 \qquad \checkmark$$
(5)

[13]

(3)

3.1 A body will <u>remain in its state of rest</u> or <u>motion at constant velocity</u> unless a <u>non-zero resultant</u> force acts on it.

3.2 F<sub>A</sub> / 2 000 N ✓ F<sub>g</sub> ✓

(2)

(2)

3.3  

$$F_{net} = 0$$

$$F_{A} - F_{g} = 0$$

$$F_{A} = F_{g}$$

$$F_{g} = 2\ 000 = m(9,8)$$

$$m = 204,08\ kg$$
(3)

3.4

$$F_{net} = ma$$

$$F_A - F_g = ma$$

$$2500 - 2000 = 204,08 \times a \checkmark$$

$$a = 2.45 m. s^{-2} \checkmark$$
(3)

3.5 The lift is pulling the earth up.  $\checkmark$  (1)

[11]

 4.1 When a <u>resultant / net force</u> acts on an object, the object will <u>accelerate</u> <u>in the direction of the force</u>, at an <u>acceleration directly proportional to</u> <u>the force</u> and <u>inversely proportional to the mass</u> of the object. (2)

4.2 
$$F_{\perp} = 200. \sin 43^{\circ}$$
  $F_{\parallel} = 200. \cos 43^{\circ}$   
 $F_{\perp} = 136,40 N$   $\checkmark$   $F_{\parallel} = 146,27 N$   $\checkmark$  (2)

4.3



4.4

$$F_{net} = ma$$

$$F_{\parallel} + F_{Peter} - F_g = ma$$

$$146,27 + 150 - 50(9,8)sin30^{\circ} \checkmark = 50.a \checkmark \checkmark$$

$$a = 1,03 \text{ m. s}^{-2} \checkmark$$
(5)

4.5  

$$N + F_{\perp} - F_{g\perp} = 0$$

$$N = F_{g\perp} - F_{\perp}$$

$$N = 50(9,8)\cos 30^{\circ} \checkmark - 136,40 \checkmark$$

$$N = 287,95 N \checkmark$$
(4)

4.6

$$f_k = \mu_k . N \checkmark$$
  
 $f_k = 0.25(287.95) \checkmark$   
 $f_k = 71.99 N \checkmark$  (3)

4.7  

$$F_{net} = 0$$

$$F_{\parallel} + F_{Peter} - F_{g\parallel} - f = 0$$

$$146,27 + x - 50(9,8)sin30^{\circ} - 71,99 = 0 \checkmark$$

$$x = 170,72 N \checkmark$$

$$170,72 - 150 = 20,72 N \checkmark$$
FPeter must increase by 20,72 N. (4)

[24]

- 5.1 When <u>object A exerts a force on object B</u>, object B <u>simultaneously</u> exerts a force which is <u>equal in magnitude but opposite in direction on</u> <u>object A</u>. (2)
- 5.2



 $N = F_g$ 

5.3

$$N = 10(9,8) = 98 N \checkmark$$

$$f_k = \mu_k \checkmark$$

$$f_k = 0.25(98) \checkmark$$

$$f_k = 24.5 N \checkmark$$
(4)

5.4

$$F_{net} = ma$$

$$T - f_k = ma$$

$$T - 24,5 = 10.a \checkmark$$

$$F_g - T = ma \quad \checkmark$$
$$15(9,8) - T = 15.a \quad \checkmark$$

$$10.a + 24,5 = 147 - T - 15.a \checkmark$$

$$a = 4,9 \, m. \, s^{-2} \text{ to the right} \checkmark$$
(6)

5.5 
$$T = 147 - 15(4,9) \checkmark$$
  
 $T = 73,5 N \checkmark$  (2)

[18]

(4)

 6.1 The gravitational <u>force of attraction</u> between two objects is <u>directly</u> proportional to the product of the masses and <u>inversely proportional to the</u> square of the distance between their centres. (2)

6.2 
$$r^2 = (2 \times 10^{11})^2 + (4 \times 10^8)^2 \checkmark (Pyth)$$
  
 $r = 2,0 \dots \times 10^{11} m$ 

$$F_{g} = \frac{Gm_{1}m_{2}}{r^{2}} \checkmark$$

$$F_{g} = \frac{6,67 \times 10^{-11}(1,99 \times 10^{30})(5,98 \times 10^{24})}{(2,0 \dots \times 10^{11})^{2}} \checkmark$$

$$F_{g} = 1,98 \times 10^{22} N \checkmark$$
(4)

6.3 Equal in magnitude.

6.4

$$W = m. g \checkmark$$
$$W = 1,5(9,8) \checkmark$$

W = 14,7 N (True weight of rock on the moon)

$$F_{g} = \frac{Gm_{1}m_{2}}{r^{2}} \checkmark$$

$$14.7 \checkmark = \frac{6.67 \times 10^{-11}(7.35 \times 10^{22})(8.67)}{r^{2}} \checkmark$$

$$r = 1\ 700\ 424.95\ m \checkmark$$
(6)

[14]

(2)