Gr11 June 2022 Exam P1 Memo

1.1	A	1.6	D
1.2	B	1.7	B
1.3	D	1.8	C
1.4	D	1.9	D
1.5	B	1.10	C

2.2

$2.3 \quad f=F_{g \|}$

$$
\begin{gather*}
f=23(9,8) \sin 30^{\circ} \\
f=112,7 N \tag{3}
\end{gather*}
$$

2.4

$$
N=F_{g \perp}
$$

$$
N=23(9,8) \cos 30^{\circ}
$$

$$
N=195,20 \ldots . . N
$$

$$
f=\mu N
$$

$$
112,7=\mu 195,20 \ldots
$$

$$
\begin{equation*}
\mu=0,58 \tag{5}
\end{equation*}
$$

3.1 A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant force acts on it.
3.2

(2)
3.3

$$
\begin{gather*}
F_{\text {net }}=0 \\
F_{A}-F_{g}=0 \\
F_{A}=F_{g} \tag{3}\\
F_{g}=2000=m(9,8) \\
m=204,08 \mathrm{~kg}
\end{gather*}
$$

3.4

$$
\begin{gather*}
F_{\text {net }}=m a \\
F_{A}-F_{g}=m a \\
2500-2000=204,08 \times a \\
a=2,45 \mathrm{~m} \cdot \mathrm{~s}^{-2} \tag{3}
\end{gather*}
$$

3.5 The lift is pulling the earth up.
4.1 When a resultant / net force acts on an object, the object will accelerate in the direction of the force, at an acceleration directly proportional to the force and inversely proportional to the mass of the object.
4.2

$$
\begin{array}{ll}
F_{\perp}=200 \cdot \sin 43^{\circ} \\
F_{\perp}=136,40 N
\end{array} \quad \begin{aligned}
& F_{\|}=200 \cdot \cos 43^{\circ} \tag{2}\\
& F_{\|}=146,27 N
\end{aligned}
$$

4.3

4.4

$$
\begin{gather*}
F_{\text {net }}=m a \\
F_{\|}+F_{\text {Peter }}-F_{g}=m a \\
146,27+150-50(9,8) \sin 30^{\circ} \checkmark=50 . a \\
a=1,03 \mathrm{~m} . \mathrm{s}^{-2}
\end{gather*}
$$

4.5

$$
\begin{gather*}
N+F_{\perp}-F_{g \perp}=0 \\
N=F_{g \perp}-F_{\perp} \\
N=50(9,8) \cos 30^{\circ} \checkmark-136,40 \\
N=287,95 N \tag{4}
\end{gather*}
$$

4.6

$$
\begin{gather*}
f_{k}=\mu_{k} \cdot N \\
f_{k}=0,25(287,95) \\
f_{k}=71,99 N \tag{3}
\end{gather*}
$$

4.7

$$
\left.\begin{array}{c}
F_{\text {net }}=0 \\
F_{1}+F_{\text {Peter }}-F_{g \|}-f=0
\end{array}\right]
$$

$146,27+x-50(9,8) \sin 30^{\circ}-71,99=0 \quad \checkmark$

$$
\begin{gathered}
x=170,72 \mathrm{~N} \\
170,72-150=20,72 \mathrm{~N}
\end{gathered}
$$

FPeter must increase by $20,72 \mathrm{~N}$.
5.1 When object A exerts a force on object B, object B simultaneously exerts a force which is equal in magnitude but opposite in direction on object A.
5.2

(4)
5.3

$$
\begin{gather*}
N=F_{g} \\
N=10(9,8)=98 \mathrm{~N} \\
f_{k}=\mu_{k} \\
f_{k}=0,25(98) \\
f_{k}=24,5 \mathrm{~N} \tag{4}
\end{gather*}
$$

5.4

$$
\begin{array}{r}
F_{\text {net }}=m a \\
T-f_{k}=m a \\
T-24,5=10 . a \\
F_{g}-T=m a \\
15(9,8)-T=15 . a
\end{array}
$$

$$
\begin{gather*}
\text { 10. } a+24,5=147-T-15 . a \\
a=4,9 \mathrm{~m} \cdot \mathrm{~s}^{-2} \text { to the right } \tag{6}
\end{gather*}
$$

5.5

$$
\begin{gather*}
T=147-15(4,9) \\
T=73,5 \mathrm{~N} \tag{2}
\end{gather*}
$$

6.1 The gravitational force of attraction between two objects is directly proportional to the product of the masses and inversely proportional to the square of the distance between their centres.
6.2

$$
\begin{gather*}
r^{2}=\left(2 \times 10^{11}\right)^{2}+\left(4 \times 10^{8}\right)^{2} \quad \checkmark \quad(P y t h) \\
r=2,0 \ldots \times 10^{11} \mathrm{~m} \\
F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \\
F_{g}=\frac{6,67 \times 10^{-11}\left(1,99 \times 10^{30}\right)\left(5,98 \times 10^{24}\right)}{\left(2,0 \ldots \times 10^{11}\right)^{2}} \\
F_{g}=1,98 \times 10^{22} \mathrm{~N} \tag{4}
\end{gather*}
$$

6.3 Equal in magnitude.
6.4

$$
\begin{gathered}
W=m \cdot g \\
W=1,5(9,8)
\end{gathered}
$$

$W=14,7 N$ (True weight of rock on the moon)

$$
\begin{gather*}
F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \\
14,7\left\ulcorner=\frac{6,67 \times 10^{-11}\left(7,35 \times 10^{22}\right)(8,67)}{r^{2}}\right. \\
r=1700424,95 \mathrm{~m} \tag{6}
\end{gather*}
$$

