MEMO GR. 11 SCIENCE P2 JUNE 2022

1.1 B	1.2 B	1.3 C	1.4 C	1.5 D	1.6 A	1.7 C	1.8 D	1.9 A	1.10 D
-------	-------	-------	-------	-------	-------	-------	-------	-------	--------

2.1	The mutual attraction between two atoms ✓ resulting from the simultaneous	
	attraction between their nuclei and the outer electrons.	(2)
2.2	Internuclear distance. 🗸	(1)
2.3	✓ Axes labels with units ✓ Shape ✓ (109; -946)	(3)
		[6]
3.1	A pair of electrons that is shared between two atoms \checkmark in a covalent bond. \checkmark	(2)
3.2.1	 Bonding partners with correct shape Number of electrons 	(2)
3.2.2	4 ✓ + marking from 3.2.1	(1)
3.2.3	NON-POLAR \checkmark bonds. $\Delta E. N. = 2,5 - 2,5 = 0 \checkmark$	(2)
3.3	 Bonding partners with correct shape 	
	 Number of bonds Partial charges 	(3)
3.4	POLAR \checkmark molecule since there is an <u>asymmetrical charge distribution</u> . \checkmark	(2)
3.5.1	✓ NH ₃ ✓ H ⁺ ✓ NH ₄ ⁺	(3)
3.5.2	Dative covalent bond. 🗸	(1)
		[16]
4.1	The vapour pressure of a substance is the pressure of gas molecules of the substance in contact with its liquid or solid form. OR The pressure exerted	
	by a vapour at equilibrium with its liquid in a closed system. $\checkmark \checkmark$ (2 or 0)	(2)
4.2	The larger the molecular mass, the higher the boiling point. $\checkmark \checkmark$	
	(0/2 if the phrase "directly proportional" is used as the graph is NOT a straight-line passing through the origin).	(2)
4.3	Gas ✓ phase.	(1)

4.4	SnH ₄ \checkmark SnH ₄ has the highest boiling point \checkmark and					
	vapour pressure is inversely proportional to boiling point. \checkmark	(3)				
4.5	 Both SiH₄ and GeH₄ have London forces between their molecules. ✓ 					
	 SiH₄ has weaker London forces than GeH₄ since it has a smaller 					
	<u>molecular mass</u> . ✓					
	 Less energy is required to break the London forces of SiH₄ resulting 					
	in a lower boiling point. 🗸	(3)				
4.6	Carbon tetrachloride (accept: CCℓ₄). ✓					
	Both CH ₄ and CC l_4 are non-polar molecules. \checkmark (like dissolves like).	(2)				
4.7	 NH₃ has hydrogen bonds between its molecules whilst CH₄ has London 					
	forces between its molecules. 🗸					
	 Hydrogen bonds are stronger than London forces. 					
	• \therefore More energy is required to break the hydrogen bonds \checkmark (resulting in a					
	higher boiling point for NH3).	(3)				
		[16]				
5.1	The energy absorbed or released per mole in a chemical reaction. $\checkmark \checkmark$ (2 or 0)	(2)				
5.2	Activated complex. ✓	(1)				
5.3	EXOTHERMIC. ✓ The energy of the products is less than the energy of the					
	reactants 🗸 meaning energy was released.	(2)				
5.4.1	$E_A = 490 - 210 \sqrt{= 280 \ kJ. mol^{-1}}$	(2)				
5.4.2	$\Delta H = 70 - 210 \sqrt{= -140} kJ. mol^{-1} \checkmark$	(2)				
5.4.3	Total Energy Released = $(\pm) (490 - 70) \sqrt{=} (\pm) 420 \text{ kJ. mol}^{-1} \sqrt{-}$					
		[11]				

6.1.2

Element	$\mathbf{n} = \frac{\mathbf{m}}{\mathbf{M}}$	Ratio	Whole Number
С	$\frac{84,21}{12} = 7,0175$	$\frac{7,0175}{7,0175} = 1$	$1 \times 4 = 4$
Н	$\frac{15,79}{1} = 15,79$	$\frac{15,79}{7,0175} = 2,25$	$2,25 \times 4 = 9$
	~	✓	

 $\therefore C_4 H_9 \checkmark$

6.2.1
$$c = \frac{m}{MV} \checkmark \qquad c = \frac{n}{V} \implies 0.25 = \frac{n}{140}$$
$$0.25 = \frac{m}{(114 \sqrt{\text{calculating M}})(140)} \checkmark \qquad \therefore n = 35 \text{ mol }\checkmark \qquad n = \frac{m}{M} \sqrt{\text{any formula}}$$
$$\therefore m = 3990 \text{ g }\checkmark \qquad 35 = \frac{m}{114 \sqrt{\text{calculating M}}}$$
$$\therefore m = 3990 \text{ g }\checkmark \qquad (4)$$

6.2.2
$$2 C_8 H_{18} + 25 O_{2(g)} \sqrt{\text{reactants}} \rightarrow 16 C O_{2(g)} + 18 H_2 O_{(g)} \sqrt{\text{products}}$$
$$V_{O_2} = 400 \times 0.21 = 84 \ dm^3 \checkmark$$
$$n = \frac{V}{V_m} \sqrt{\text{formula}} = \frac{84}{26} \sqrt{\text{substitution}} = 3.23 \dots \text{mol}$$
$$n_{CO_2} = \frac{16}{25} \times n_{O_2} \sqrt{\text{ratio}} = \frac{16}{25} \times 3.23 \dots = 2.06 \dots \text{mol}$$
$$n = \frac{N}{N_A} \sqrt{\text{formula}}$$
$$2.06 \dots = \frac{N}{6.02 \times 10^{23}}$$
$$N = 1.24 \times 10^{24} \sqrt{CO_2} \text{ molecules released per second}$$

(maximum 4/8 if the equation is not balanced or balanced incorrectly)

(8) **[17]**

(3)

(2)

7.1 The reactant which is completely used up in a reaction.
 OR
 The reactant which determines how much product forms. ✓ (1)

7.2.1
$$H_2 \checkmark$$
 (1)

7.2.2 $n_{H_2O} = n_{H_2} = 20\ 000\ mol$

$$n = \frac{m}{M} \sqrt{\text{formula}}$$
$$20\ 000 = \frac{m}{18}$$

 $\therefore m = 360\ 000\ g \checkmark$ (3)

7.2.3 n_{O_2} (leftover) = 10 000 mol \checkmark

$$n = \frac{V}{V_m} \sqrt{\text{formula}}$$

$$10\ 000 = \frac{V}{22.4}$$

$$\therefore V = 224\ 000\ dm^3 \checkmark$$
(3)

7.3 2:1 ratio of hydrogen to oxygen \checkmark , i.e. two parts hydrogen, one part oxygen. (1)

- 7.4 Rocket fuel produces H₂O only. ✓ F1 fuel also produces CO₂ ✓ (a greenhouse gas which contributes to climate change). (2)
- 7.5 $n = \frac{m}{M} = \frac{250\ 000}{32} \sqrt{\text{calculating n}} = 7\ 812, 5\ mol$

Energy Released =
$$-188 \times 7812, 5\sqrt{=} -1468750 \, kJ\sqrt{}$$
 (3)

[14]