ALEXANDER ROAD HIGH SCHOOL

JUNE 2021
PHYSICAL SCIENCES JUNE ASSESSMENT
180 MINUTES
JA
GRADE 11
TOTAL = 150

1.1	$D \checkmark \checkmark$	7.1	B $\checkmark \checkmark$
1.2	$C \checkmark \checkmark$	7.2	A $\checkmark \checkmark$
1.3	B $\checkmark \checkmark$		7.3
D $\checkmark \checkmark$			
1.4	A $\checkmark \checkmark$		7.4
D $\checkmark \checkmark$			
1.5	A $\checkmark \checkmark$	[10]	7.5
		$B \checkmark \checkmark$	

[10]
2.1 The resultant force is zero.
[OR: The forces form a closed vector diagram].
2.2 A resultant vector is a single vector having the same effect as two or more vectors together. $\checkmark \checkmark$ (2 or 0)
[OR: A resultant vector is the vector sum of two or more vectors.]
2.3 $\quad \checkmark \mathrm{F}_{\mathrm{g}} \checkmark \mathrm{F}_{\mathrm{A}}$ (or $\left.\mathrm{T}_{\text {rope }}\right) \quad \checkmark \mathrm{T}_{\text {chain }}$ (with labels)
\checkmark at least one angle indicated
$2.4 \quad F_{g}=m g=(5400)(9,8)=52920 \mathrm{~N}$
$\left(F_{g}\right)^{2}=\left(T_{\text {chain }}\right)^{2}+\left(F_{A}\right)^{2}$
$(52920)^{2}=\left(T_{\text {chain }}\right)^{2}+(35000)^{2}$
$\therefore T_{\text {chain }}=39692,90 \mathrm{~N} \checkmark$
2.5 Using the symmetry of the diagram:
$\cos \theta=\frac{35000}{52920} \checkmark$
$\therefore \theta=48,60^{\circ}$

3.1 A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant/net force acts on it. $\checkmark \checkmark$ (2 or 0)
3.2 $\quad F_{g}\left(\right.$ box \& car) $=F_{N}=13230 N \quad$ recognising $\mathrm{Fg}=13230 \mathrm{~N}$
$13230=\left(m_{\text {box\&car }}\right)(9,8) \quad \checkmark$ subbing to find the combined mass
$\therefore m_{\text {box\&car }}=1350 \mathrm{~kg}$
$m_{\text {box }}=1350-1200 \checkmark$ subtracting masses
$\therefore m_{b o x}=150 \mathrm{~kg}$
3.3 TO THE LEFT.

The inertia of the box resists a change to its state of motion.
4.1 $\quad \checkmark \mathrm{F}_{\mathrm{g}}$ (OR components) $\quad \checkmark \mathrm{F}_{\mathrm{N}} \quad \checkmark \mathrm{f}_{\mathrm{k}}$ (with labels and correct orientation)
4.2
$F_{g \|}=m g \sin \theta=(8)(9,8)\left(\sin 30^{\circ}\right)=12,9 N \quad \checkmark$ calculating Fg parallel
$F_{n e t}=m a$
$F_{g \|}-f_{k}=m a \quad \checkmark$ either formula
$12,9-4,4=8 a \quad \checkmark$ substitution with correct values
$\therefore a=1,06 \mathrm{~m} \cdot \mathrm{~s}^{-2} \checkmark$ down the incline \checkmark direction
4.3.1 What is the relationship between the acceleration and mass of an object?
\checkmark mentions independent and dependent variable $\quad \checkmark$ does not have a yes/no answer
4.3.2 - The type of material the crate is made from

- The surface of the truck
- The angle of inclination
\checkmark (ANY ONE)
4.3.3

4.3.4 When a resultant/net force acts on an object, the object will accelerate in the direction of the force \checkmark at an acceleration directly proportional to the force and inversely proportional to the mass of the object.
5.1 $\quad \checkmark \mathrm{F}_{\mathrm{A}}$ (OR components) $\checkmark \mathrm{Fg}_{\mathrm{g}} \checkmark \mathrm{F}_{\mathrm{N}} \quad \checkmark \mathrm{f}_{\mathrm{k}} \checkmark \mathrm{T}$ (with labels and correct orientation)
5.2.1 $\quad F_{g}=m g$
$F_{g}=(5)(9,8) \quad \checkmark$ calculating Fg
$N=F_{g}=49 N \quad \checkmark$ realising $\mathrm{N}=\mathrm{Fg}$
$\mu_{k}=\frac{f_{k}}{N} \quad \checkmark^{\text {formula }}$
$0,35=\frac{f_{k}}{49}$

$\therefore f_{k}=17,15 N \checkmark$

5.2.2 3 kg block:

$F_{n e t}=m a$
$T-F_{g}=m a \quad \checkmark$ either formula
$T-(3)(9,8)=3 a \quad \checkmark$ substitution
$\therefore T=3 a+29,4 \quad$... (eqn. 1)

15 kg block:
$F_{A}-f_{k}-T=m a \quad \checkmark$ correct Fres - direction MUST be consistent with previous equation
$90-17,15-\mathrm{T}=15 \mathrm{a} \quad \ldots$ (eqn.2) \checkmark substitution

Sub eqn. 1 into eqn.2: $90-17,15-(3 a+29,4)=15 a \quad \checkmark$ subbing
$\therefore a=2,41 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
5.2.3 $T=3(2,41)+29,4 \checkmark^{\text {subbing }}=36,63 N \checkmark$ (ACCEPT: 36,64N)
5.3 INCREASES.

In the absence of friction, the resultant force will increase
resulting in an increase in acceleration.
6.1 The gravitational force of attraction between two objects is directly proportional to the product of their masses \checkmark and inversely proportional to the square of the distance between their centres.
6.2

$$
\begin{equation*}
F=\frac{G m_{1} m_{2}}{r^{2}} \tag{2}
\end{equation*}
$$

$F=\frac{\left(6,67 \times 10^{-11}\right)\left(\frac{1}{10}\right)\left(5,98 \times 10^{24}\right)\left(5,98 \times 10^{24}\right) \checkmark}{\left(3,58 \times 10^{9} \times 1000\right)^{2} \checkmark}$
$F=1,86 \times 10^{13} \mathrm{~N}$
$6.3 \quad 1,86 \times 10^{13} N \checkmark$
6.4 Newton's Third Law

When object A exerts a force on object B, object B SIMULTANEOUSLY exerts an oppositely directed force of equal magnitude on object A. \checkmark
6.5

$$
\begin{align*}
& \frac{W_{\text {Mars }}}{W}=\frac{G m\left(\frac{1}{10}\right) M_{E}}{\left(\frac{1}{2} R_{E}\right)^{2}} \div \frac{G m M_{E}}{R_{E}^{2}} \tag{2}\\
& W_{\text {Mars }}=0,4 W \quad \checkmark \checkmark \tag{2}
\end{align*}
$$

8.1 The mutual attraction between two atoms resulting from the simultaneous attraction between their nuclei and the outer electrons.

$$
\begin{equation*}
\checkmark \checkmark(2 \text { or } 0) \tag{2}
\end{equation*}
$$

8.2.1

(one mark for bonding partners \& correct shape; one mark for electrons)
$8.3 \quad N \equiv N \checkmark$
8.4.1 $\mathrm{HC} \ell, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}, \mathrm{BF}_{3} \checkmark \checkmark \checkmark$
8.4.2 $\mathrm{HC} \ell, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{BF}_{3} \checkmark \checkmark \checkmark$
(one mark for every TWO correct compounds;
third mark is if no ADDITIONAL compounds are listed).
8.5.1

8.5.2 Dative covalent bond.
9.1 The temperature at which the vapour pressure of a substance equals atmospheric pressure. $\checkmark \checkmark$ (2 or 0)

- HF has hydrogen bonds between its molecules.
- $\mathrm{HC} \ell$ has dipole-dipole forces between its molecules.
- Hydrogen bonds are stronger than dipole-dipole forces.
- More energy is required to break hydrogen bonds.
- \therefore The boiling point of HF is higher than the boiling point of $\mathrm{HC} \ell$.
9.3
- All the hydrogen halides are polar molecules.
- All the molecular halogens are non-polar molecules.
- Like dissolves like.
- $\quad \therefore$ The polar hydrogen halides dissolve in polar water and non-polar molecular halogens will not dissolve in polar water.

OR

- All the hydrogen halides have hydrogen bonds or dipole-dipole forces between their molecules.
- All the molecular halogens have London forces between their molecules.
- Like dissolves like.
- $\quad \therefore$ The hydrogen halides dissolve in water (which has hydrogen bonds) and the molecular halogens will not dissolve in water.
9.4.1 B. \checkmark
9.4.2 - HC has a lower boiling point than HF.
- $\mathrm{HC} \ell$ is more volatile (i.e. evaporates more easily).
- \therefore More HC ℓ will evaporate resulting in a greater decrease in volume.
10.1 The energy absorbed or released per mole in a chemical reaction.
10.2 EXOTHERMIC. \checkmark

The energy of the products is less than the energy of the reactants \checkmark (meaning energy was released).
10.3.1 $\Delta \mathrm{H}=-10-53 \checkmark=-63 \mathrm{~kJ}$
10.3.2 $\mathrm{E}_{\mathrm{A}}=128-53 \checkmark=75 \mathrm{~kJ}$
10.4

11.1 Energy Absorbed $=3(436) \checkmark^{3 \mathrm{x} \text { H-Henergy }}+946=2254 \mathrm{~kJ} \checkmark^{\text {adding reactants }}$ Energy Released $=2[3(390)] \checkmark^{3 \times \mathrm{N}-\mathrm{H} \text { energy }}=2340 \mathrm{~kJ} \checkmark^{2 \times \mathrm{NH}_{3} \text { energy }}$ Heat of Reaction $=2254-2340=-86 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
11.2 EXOTHERMIC. \checkmark positive marking from 11.1
12.1.1
$c=\frac{n}{V} \checkmark^{\text {formula }}$
$n=\frac{m}{M} \checkmark^{\text {formula }}$
$0,02=\frac{n_{\mathrm{AgNO}_{3}}}{0,5} \quad \checkmark^{\text {substitution }}$
$0,01=\frac{m}{108+35,5}$
$n_{\mathrm{AgNO}_{3}}=0,01 \mathrm{~mol}$
$n_{A g C \ell}=1,435=1,44 g \checkmark$
$n_{A g C \ell}=n_{A g N O_{3}}=0,01 \mathrm{~mol} \quad \checkmark$ use of ratio
12.1.2
$n=\frac{N}{N_{A}} \checkmark^{\text {formula }}$
$0,01=\frac{\mathrm{N}}{6,02 \times 10^{23}} \checkmark^{\text {substitution }}$
$\mathrm{N}=6,02 \times 10^{21} \mathrm{AgC} \ell$ molecules \checkmark
12.2 The reactant which is completely consumed in a reaction. $\checkmark \checkmark$ (2 or 0)
[OR: The reactant which determines the amount of product which forms].
$12.3 \quad \mathrm{n}_{\mathrm{H}_{2}}$ reacted $=3 \times \mathrm{n}_{\mathrm{N}_{2}}=3(0,14)=0,42 \mathrm{~mol}$
$\therefore \mathrm{H}_{2}$ is the limiting reactant.

$$
\mathrm{n}=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{m}}} \checkmark^{\text {formula }}
$$

$\mathrm{n}_{\mathrm{NH}_{3}}=\frac{2}{3} \times \mathrm{n}_{\mathrm{H}_{2}} \checkmark^{\text {use of mole ratio with } \mathbf{H}_{2}}$
$0,2 \dot{6}=\frac{\mathrm{V}}{22,4} \checkmark^{\text {substitution }}$

$$
\begin{equation*}
\mathrm{V}=5,97 \mathrm{dm}^{3} \tag{5}
\end{equation*}
$$

$\therefore n_{N H_{3}}=\frac{2}{3}(0,40)=\frac{4}{15}=0,2 \dot{6} \mathrm{~mol}$
$\%$ Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100$
$80=\frac{16}{\text { theoretical yield }} \times 100$
Theoretical Yield $=20 \mathrm{dm}^{3}$
$\mathrm{n}_{\mathrm{N}_{2}}=\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{m}}} \checkmark^{\text {formula }}$
$\mathrm{n}_{\mathrm{N}_{2}}=\frac{20}{24} \checkmark^{\text {substitution }}$
$\therefore \mathrm{n}_{\mathrm{N}_{2}}=\frac{5}{6}=0,8 \dot{3} \mathrm{~mol}$
$\mathrm{n}_{\mathrm{NaN}_{3}}=\frac{2}{3} \times \mathrm{n}_{\mathrm{N}_{2}} \checkmark^{\text {use of ratio }}$
$\therefore \mathrm{n}_{\mathrm{NaN}_{3}}=\frac{2}{3}(0,8 \dot{3})=\frac{5}{9}=0,5 \mathrm{5} \mathrm{mol}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$
$0, \dot{5}=\frac{\mathrm{m}_{\mathrm{NaN}_{3}}}{23+3(14)}$
$\therefore \mathrm{m}_{\mathrm{NaN}_{3}}=36,11 \mathrm{~g}$
$\mathrm{n}_{\mathrm{N}_{2}}=\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{m}}} \checkmark^{\text {formula }}$
$\mathrm{n}_{\mathrm{N}_{2}}=\frac{16}{24} \checkmark^{\text {substitution }}$
$\therefore \mathrm{n}_{\mathrm{N}_{2}}=\frac{2}{3}=0, \dot{6} \mathrm{~mol}$
$\mathrm{n}_{\mathrm{NaN}_{3}}=\frac{2}{3} \times \mathrm{n}_{\mathrm{N}_{2}} \quad{ }^{\text {use of ratio }}$
$\therefore \mathrm{n}_{\mathrm{NaN}_{3}}=\frac{2}{3}(0, \dot{6})=\frac{4}{9}=0, \dot{4} \mathrm{~mol}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$
$0, \dot{4}=\frac{\mathrm{m}_{\mathrm{NaN}_{3}}}{23+3(14)}$
$\therefore \mathrm{m}_{\mathrm{NaN}_{3}}=28, \dot{8} \mathrm{~g} \checkmark$
$\%$ Yield $=\frac{\text { actual }}{\text { theoretical }} \times 100$
$80=\frac{28, \dot{8}}{\mathrm{~m}_{\mathrm{NaN}_{3}}} \times 100$
$\mathrm{m}_{\mathrm{NaN}_{3}}=36,11 \mathrm{~g}$

