

ALEXANDER ROAD HIGH SCHOOL

JUNE 2	2021 PHYSICAL SCIENCES JUNE ASSESSMENT	180 MINUTES
JA	GRADE 11	TOTAL = 150
1.1	D ✓ ✓ 7.1 B ✓ ✓	
1.2	C ✓ ✓ 7.2 A ✓ ✓	
1.3	B ✓ ✓ 7.3 D ✓ ✓	
1.4	A ✓ ✓ 7.4 D ✓ ✓	
1.5	A ✓ ✓ [10] 7.5 B ✓ ✓	[10]
2.1	The resultant force is zero. ✓	
	[OR: The forces form a closed vector diagram].	(1)
2.2	A resultant vector is a single vector having the same effect as	two or more
	vectors together. ✓✓ (2 or 0)	
	[OR: A resultant vector is the vector sum of two or more vectors.]	(2)
2.3	✓ F_g ✓ F_A (or T_{rope}) ✓ T_{chain} (with labels)	
	✓ at least one angle indicated	(4)
2.4	$F_g = mg = (5\ 400)(9,8) = 52\ 920\ N$ \checkmark	λ_{α}
	$(F_g)^2 = (T_{chain})^2 + (F_A)^2$	
	$(52\ 920)^2 = (T_{chain})^2 + (35\ 000)^2 \checkmark F_g$	$\mathbf{\lambda}$
	$\therefore T_{chain} = 39\ 692,90\ N \checkmark$	
2.5	Using the symmetry of the diagram:	Jui -
	$\cos\theta = \frac{35000}{52920} \checkmark$	FA (2)
	$\therefore \theta = 48,60^{\circ} \checkmark$	(2)

[12]

3.1	A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant/net force acts on it. $\checkmark \checkmark$ (2 or 0)	(2)
3.2	F_g (box & car) = $F_N = 13\ 230\ N$ \checkmark recognising Fg=13230N	
	13 230 = $(m_{box\&car})(9,8)$ \checkmark subbing to find the combined mass	
	$\therefore m_{box\&car} = 1\ 350\ kg$	
	$m_{box} = 1\ 350 - 1\ 200$ v subtracting masses	
	$\therefore m_{box} = 150 \ kg \checkmark$	(4)
3.3	TO THE LEFT. ✓	(2)
		(2) [8]
4.1	✓ F_g (OR components) ✓ F_N ✓ f_k (with labels and correct orientation)	
4.2	$F_{g\parallel} = mg\sin\theta = (8)(9,8)(\sin 30^\circ) = 12,9 N \checkmark \text{calculating Fg parallel}$	/ FN
	$F_{net} = ma$	
	$F_{g\parallel} - f_k = ma \checkmark$ either formula F_g	
	12,9-4,4=8a ✓ substitution with correct values	
	$\therefore a = 1,06 m. s^{-2} \checkmark \text{down the incline } \checkmark \text{direction}$	(5)
4.3.1	What is the relationship between the acceleration and mass of an object? ✓ mentions independent and dependent variable ✓ does not have a yes/no answer	(2)
4.3.2	 The type of material the crate is made from a The surface of the truck 	
	The angle of inclination ✓ (ANY ONE)	(1)
4.3.3	\checkmark hyperbolic shape \checkmark axes labelled	<u> </u>
4.3.4	When a resultant/net force acts on an object, the object will accelerate in the	
	direction of the force \checkmark at an acceleration directly proportional to the force and inversely proportional to the mass of the object \checkmark	(2)
		(2) [15]

 $F_A - f_k - T = ma$ \checkmark correct Fres – direction MUST be consistent with previous equation 90 - 17,15 - T = 15a ... (eqn. 2) \checkmark substitution

Sub eqn.1 into eqn.2: $90 - 17,15 - (3a + 29,4) = 15a \checkmark \text{subbing}$ $\therefore a = 2,41 \text{ m. s}^{-2} \checkmark$ (6)

5.2.3
$$T = 3(2,41) + 29,4 \checkmark^{\text{subbing}} = 36,63 N \checkmark (\text{ACCEPT: } 36,64 N)$$
 (2)

5.3 INCREASES. ✓

In the absence of friction, the resultant force will increase \checkmark	
resulting in an increase in acceleration.	(2)

[19]

(5)

6.1 <u>The gravitational force</u> of attraction between two objects is directly
 proportional to the product of their masses ✓ and inversely proportional to the
 square of the distance between their centres. ✓ (2)

6.2

$$F = \frac{Gm_1m_2}{r^2} \checkmark$$

$$F = \frac{(6,67 \times 10^{-11}) \left(\frac{1}{10}\right) (5,98 \times 10^{24}) (5,98 \times 10^{24}) \checkmark}{(3,58 \times 10^9 \times 1000)^2 \checkmark}$$

$$F = 1,86 \times 10^{13} N \checkmark$$
(4)

6.3
$$1,86 \times 10^{13} N \checkmark$$
 (1)

6.4 Newton's Third Law. ✓
 When object A exerts a force on object B, object B SIMULTANEOUSLY exerts an oppositely directed force of equal magnitude on object A. ✓
 (2)

6.5

$$\frac{W_{Mars}}{W} = \frac{Gm\left(\frac{1}{10}\right)M_E}{\left(\frac{1}{2}R_E\right)^2} \div \frac{GmM_E}{R_E^2}$$

$$W_{Mars} = 0.4W \checkmark \checkmark$$
(2)

[11]

8.1	The mutual attraction between two atoms resulting from the simultaneous attraction between their nuclei and the outer electrons. $\checkmark \checkmark (2 \text{ or } 0)$ (
8.2.1	H:S: H	
	(one mark for bonding partners & correct shape; one mark for electrons)	(4)
8.3	$N \equiv N \checkmark$	(1)
8.4.1	HC ℓ , H ₂ S, CO ₂ , BF ₃ $\checkmark \checkmark \checkmark$	(3)
8.4.2	HC ℓ , PH ₃ , H ₂ S, BF ₃ $\checkmark \checkmark \checkmark$	(3)
	(one mark for every TWO correct compounds; third mark is if no ADDITIONAL compounds are listed).	
8.5.1	$H: \overset{\bullet}{O}: + [H]^{+}> \begin{bmatrix} H: \overset{\bullet}{O}: H \\ H \end{bmatrix}^{+}_{\checkmark}$	(3)
		(3)
8.5.2	Dative covalent bond. ✓	(1)
		[17]
9.1	The temperature at which the vapour pressure of a substance equals atmospheric pressure. $\checkmark\checkmark$ (2 or 0)	
9.2	 HF has hydrogen bonds between its molecules. ✓ HCℓ has dipole-dipole forces between its molecules. ✓ Hydrogen bonds are stronger than dipole-dipole forces. ✓ 	

- More energy is required to break hydrogen bonds. \checkmark
- \therefore The boiling point of HF is higher than the boiling point of HC ℓ . (4)

9.3	 All the hydrogen halides are polar molecules. ✓ 	
	• All the molecular halogens are non-polar molecules. \checkmark	
	 Like dissolves like. ✓ 	
	• \therefore The polar hydrogen halides dissolve in polar water and non-polar	
	molecular halogens will not dissolve in polar water.	
	OR	
	All the hydrogen halides have hydrogen bonds or dipole-dipole forces	
	between their molecules. ✓	
	All the molecular halogens have London forces between their	
	molecules. 🗸	
	 Like dissolves like. ✓ 	
	 The hydrogen halides dissolve in water (which has hydrogen bonds) 	(3)
	and the molecular halogens will not dissolve in water.	(3)
941	B√	(1)
5.4.1		(')
9.4.2	• HC ℓ has a lower boiling point than HF. \checkmark	
	 HCℓ is more volatile (i.e. evaporates more easily). ✓ 	(-)
	 ∴ More HCℓ will evaporate resulting in a greater decrease in volume. 	(2)
		[12]
10.1	The energy absorbed or released per mole in a chemical reaction. \checkmark	(2)
10.2	EXOTHERMIC. ✓	
	The energy of the products is less than the energy of the reactants \checkmark	
	(meaning energy was released).	(2)
10.3.1	$\Delta H = -10 - 53 \checkmark = -63 \text{ kJ} \checkmark$	(2)
1032	$E_{A} = 128 = 53 \checkmark = 75 \text{ km}$	(2)
10.0.2	$L_{\rm A} = 120 - 352 - 75 {\rm MJ}^2$	(~)
10.4		

11.1 Energy Absorbed = $3(436) \checkmark {}^{3x H-H energy} + 946 = 2254 \text{ kJ} \checkmark {}^{adding reactants}$

Energy Released = $2[3(390)] \checkmark^{3x \text{ N-H energy}} = 2 340 \text{ kJ} \checkmark^{2x \text{ NH}_3 \text{ energy}}$

Heat of Reaction =
$$2\ 254 - 2\ 340 = -86\ \text{kJ.mol}^{-1}$$
 (5)

11.2 EXOTHERMIC. ✓ positive marking from 11.1

(1)

[6]

12.1.1
$$c = \frac{n}{V} \checkmark^{\text{formula}}$$

 $n = \frac{m}{M} \checkmark^{\text{formula}}$
 $0,02 = \frac{n_{AgNO_3}}{0,5} \checkmark^{\text{substitution}}$
 $n_{AgNO_3} = 0,01 \text{ mol}$
 $n_{AgC\ell} = 1,435 = 1,44 \text{ g }\checkmark$

 $n_{AgC\ell} = n_{AgNO_3} = 0,01 \ mol \ \checkmark$ use of ratio

12.1.2
$$n = \frac{N}{N_A} \checkmark^{\text{formula}}$$
$$0,01 = \frac{N}{6,02 \times 10^{23}} \checkmark^{\text{substitution}}$$
$$N = 6,02 \times 10^{21} \text{ AgC}\ell \text{ molecules }\checkmark$$
(3)

12.2 The reactant which is completely consumed in a reaction. ✓ ✓ (2 or 0)
 [OR: The reactant which determines the amount of product which forms]. (2)

12.3
$$n_{H_{2}} \operatorname{reacted} = 3 \times n_{N_{2}} = 3(0,14) = 0,42 \operatorname{mol}$$
$$\therefore H_{2} \text{ is the limiting reactant. \checkmark} \qquad n = \frac{V}{V_{m}} \checkmark^{\text{formula}}$$
$$0,2\dot{6} = \frac{V}{22,4} \checkmark^{\text{substitution}}$$
$$0,2\dot{6} = \frac{V}{22,4} \checkmark^{\text{substitution}}$$
$$V = 5,97 \operatorname{dm}^{3} \checkmark$$
$$(5)$$
[15]

% Yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$$

$$80 = \frac{16}{\text{theoretical yield}} \times 100 \checkmark$$

Theoretical Yield = $20 \text{ dm}^3 \checkmark$

$$n_{N_{2}} = \frac{V}{V_{m}} \checkmark^{\text{formula}}$$
$$n_{N_{2}} = \frac{20}{24} \checkmark^{\text{substitution}}$$
$$\therefore n_{N_{2}} = \frac{5}{6} = 0.83 \text{ mol}$$

$$n_{\text{NaN}_3} = \frac{2}{3} \times n_{\text{N}_2} \checkmark^{\text{use of ratio}}$$
$$\therefore n_{\text{NaN}_3} = \frac{2}{3} (0.83) = \frac{5}{9} = 0, 5 \text{ mol}$$

$$n_{N_{2}} = \frac{V}{V_{m}} \checkmark \text{formula}$$
$$n_{N_{2}} = \frac{16}{24} \checkmark \text{substitution}$$
$$\therefore n_{N_{2}} = \frac{2}{3} = 0, \dot{6} \text{ mol}$$

$$n_{\text{NaN}_3} = \frac{2}{3} \times n_{\text{N}_2} \checkmark^{\text{use of ratio}}$$
$$\therefore n_{\text{NaN}_3} = \frac{2}{3} (0, \dot{6}) = \frac{4}{9} = 0, \dot{4} \text{ mol}$$

$$n = \frac{m}{M}$$

0,
$$\dot{4} = \frac{m_{NaN_3}}{23 + 3(14)}$$

∴ $m_{NaN_3} = 28, \dot{8} \text{ g } \checkmark$

$$n = \frac{m}{M} \qquad \qquad \% \text{ Yield} = \frac{\text{actual}}{\text{theoretical}} \times 100$$

$$0, \dot{5} = \frac{m_{\text{NaN}_3}}{23 + 3(14)} \qquad \qquad 80 = \frac{28, \dot{8}}{m_{\text{NaN}_3}} \times 100 \checkmark$$

$$\therefore m_{\text{NaN}_3} = 36,11 \text{ g} \checkmark \qquad \qquad m_{\text{NaN}_3} = 36,11 \text{ g} \checkmark$$

[6]