

#### ALEXANDER ROAD HIGH SCHOOL

| Novemb  | er 2021 PHYSICAL SCIENCES ASSESSMENT PAPER 2                                                   | 180 MINUTES |  |
|---------|------------------------------------------------------------------------------------------------|-------------|--|
| CO, JA, | MH GRADE 11 MEMO                                                                               | TOTAL = 150 |  |
| 1.1 C   | $\checkmark\checkmark$                                                                         |             |  |
| 1.2 C   | $\checkmark \checkmark$                                                                        |             |  |
| 1.3 C   | $\checkmark \checkmark$                                                                        |             |  |
| 1.4 B   | $\checkmark\checkmark$                                                                         |             |  |
| 1.5 D   | $\checkmark\checkmark$                                                                         |             |  |
| 1.6 A   | $\checkmark\checkmark$                                                                         |             |  |
| 1.7 C   | $\checkmark\checkmark$                                                                         |             |  |
| 1.8 A   | $\checkmark\checkmark$                                                                         |             |  |
| 1.9 C   | $\checkmark\checkmark$                                                                         |             |  |
| 1.10 A  | $\checkmark\checkmark$                                                                         |             |  |
| QUESTIC | <u>N 2:</u>                                                                                    |             |  |
| Chemica | l bonding                                                                                      |             |  |
| 2.1.1   | E✓                                                                                             | (1)         |  |
| 2.1.2   | D ✓                                                                                            | (1)         |  |
| 2.1.3   | C √                                                                                            | (1)         |  |
| 2.1.4   | A $\checkmark$ , N and As are in the same group on the periodic table $\checkmark$ , thus have | ave (3)     |  |
|         | the same electron structure 🗸                                                                  |             |  |
| 2.2.1   | A and D 🗸 🗸                                                                                    | (2)         |  |
| 2.2.2   | Ammonium ✓ and hydronium/oxonium ✓                                                             | (2)         |  |
| 2.2.3   | Covalent: share electrons ✓ from half-filled orbitals ✓                                        |             |  |

Dative: share electrons  $\checkmark$  from a full orbital and an empty orbital  $\checkmark$ 

(4)

| 2.3.1 | Ö::C::Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2)  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.3.2 | Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|       | (Oxygen has a higher electronegativity than carbon, bonding electrons are attracted towards oxygen making the oxygen (delta) negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)  |
| 2.3.3 | $\delta^{-} O = C = O \delta^{-} \sqrt{\delta^{-} - charge} \sqrt{\delta^{+} - charge} \sqrt{\delta^{+} - charge} \sqrt{\delta^{-} - charge} \sqrt{\delta^{+} - charge} \sqrt{\delta^{-} - charge} \delta^{-$ | (3)  |
| 2.4.1 | A mutual attraction between two atoms resulting from the simultaneous attraction between their nuclei and the outer electrons $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)  |
| 2.4.2 | A = bond length $\checkmark$<br>B = Bond energy $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)  |
| 2.4.3 | 300√ J √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)  |
| 2.4.4 | 3,7 pm ✓ (Accept any value from 3,6-3,8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1)  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [28] |

### QUESTION 3:

| IMFs  |                                                                                                                               |     |
|-------|-------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.1.1 | Intra – between the atoms in the molecule $\checkmark$                                                                        | (2) |
|       | Inter – between different molecules of NH3 ✓ (or between 2 ore more                                                           |     |
|       | molecules)                                                                                                                    |     |
| 3.2.1 | covalent (bond) 🗸                                                                                                             | (1) |
| 3.2.2 | H-bonding 🗸                                                                                                                   | (1) |
| 3.3.1 | H-bonding 🗸                                                                                                                   | (1) |
| 3.3.2 | NH <sub>3</sub> ✓                                                                                                             | (1) |
| 3.3.3 | <u>Temperature</u> at which liquid changes to gas $\checkmark$ when the vapour pressure of a                                  | (2) |
|       | substance = the atmospheric pressure $\checkmark$                                                                             |     |
| 3.3.4 | $NH_3 + H_2O \checkmark \rightarrow NH_4OH \checkmark \qquad OR  NH_3 + H_2O \checkmark \rightarrow NH_4^+ + OH^- \checkmark$ | (2) |
| 3.3.5 | Basic ✓, hydroxide formed ✓                                                                                                   | (2) |
| 3.4   | HF has H-bonding, HCl has dipole-dipole bonding $\checkmark$                                                                  |     |
|       | H- bonding is stronger 🗸                                                                                                      |     |
|       | More energy needed to break/overcome the H bonding in HF $\checkmark$                                                         |     |
|       | Higher temp needed to provide enough energy, $\checkmark$ higher BP                                                           | (4) |
| 3.5.1 | The BP increases from A to C. $\checkmark \checkmark$ OR The BP decreases from C to A.                                        | (2) |

| 3.5.2 | All molecule have London forces (or Vd Waals induced dipole-indused dipole)√                         |      |
|-------|------------------------------------------------------------------------------------------------------|------|
|       | $C_3H_8$ forces are strongest, since <u>molecule biggest</u> (or greatest surface area) $\checkmark$ |      |
|       | More energy needed to break/overcome the forces in $C_3H_8$ $\checkmark$                             |      |
|       | (Higher temp needed to provide enough energy, $\therefore$ higher BP )                               | (3)  |
|       |                                                                                                      | [21] |

### **QUESTION 4:**

| Stoichio | ometry                                                                                                        |      |
|----------|---------------------------------------------------------------------------------------------------------------|------|
| 4.1.1    | Simplest ratio $\checkmark$ between the atoms in the molecule $\checkmark$                                    | (2)  |
| 4.1.2    | n(C) = m/M = 38,8/12 = 3,23 mol                                                                               |      |
|          | n(H) = 16,1                                                                                                   |      |
|          | n(N) = 45,1/14 = 3,22  (for all 3 mole calculations)                                                          |      |
|          | $n(C) : n(H) : n(N) = 3,23 : 16,1 : 3,22 = 1 : 5 : 1 \checkmark$                                              |      |
|          | Empirical: CH₅N ✓                                                                                             |      |
|          | $M(CH_5N) = 12 + 5(1) + 14 = 31g.mol^{-1}$                                                                    |      |
|          | M(CH₅N) : M (real)=31:93 = 1:3 ✓                                                                              |      |
|          | Real formula is C <sub>3</sub> H <sub>15</sub> N <sub>3</sub> ✓                                               | (6)  |
| 4.2.1    | $n(Na_2CO_3) = m/M \checkmark = \frac{154}{106} \checkmark = 1,453 \text{ mol }\checkmark$                    |      |
|          | $n(HCI) = c.v \checkmark = 5 \times 0.5 \checkmark = 2.5 mol \checkmark$                                      |      |
|          | n(HCl) needed to react with 1,453 mol Na <sub>2</sub> CO <sub>3</sub> = 1,453 x 2 $$ = 2,90566 mol            |      |
|          | $\therefore$ HCl is limiting (only 2,5 mol available) $\checkmark$                                            | (0)  |
|          | OR                                                                                                            | (8)  |
|          | n(Na <sub>2</sub> CO <sub>3</sub> ) needed to react with 2,5 mol HCl = 2,5 x $\frac{1}{2}$ = 1,25 mol         |      |
|          | $\therefore$ Na <sub>2</sub> CO <sub>3</sub> in excess (1,453 mol available) and $\therefore$ HCl is limiting |      |
| 4.2.2    | n(CO <sub>2</sub> ) formed = 2,5 x $^{1}/_{2}$ $\checkmark$ = 1,25 mol (or use 1,25 mol from above)           | (5)  |
|          | $V(CO_2) = n.V_m$ $\checkmark = 1,25 \times 22,4$ $\checkmark = 28 \text{ dm}^3$                              |      |
|          | % yield = ${}^{21}/_{28} \checkmark x100 = 75\% \checkmark$                                                   |      |
|          |                                                                                                               | [21] |

### **QUESTION 5:**

| 5.1 | The pressure (of an enclosed gas) is inversely proportional to the volume at constant     |
|-----|-------------------------------------------------------------------------------------------|
|     | temperature. ✓✓ (2 or 0)                                                                  |
| 5.2 | INCREASE. ✓                                                                               |
|     | The gas particles inside the balloon are in a smaller volume resulting in more collisions |
|     | (per unit area) with the walls of the balloon. $\checkmark$                               |

| 5.3 | $p_1.V_1 = p_2.V_2$                                                                                  |
|-----|------------------------------------------------------------------------------------------------------|
|     | $(101,5)(5) = p_2(2) \checkmark$                                                                     |
|     | $\therefore p_2 = 253,75  kPa \checkmark$                                                            |
|     | $\therefore$ Yes, the balloon will burst. $\checkmark$                                               |
| 5.4 | <ul> <li>Temperature is a measure of the average kinetic energy of the particles. ✓</li> </ul>       |
|     | <ul> <li>At a hotter temperature, the gas particles have more kinetic energy / move</li> </ul>       |
|     | around faster. ✓                                                                                     |
|     | <ul> <li>This results in more collisions (per unit area) with the walls of the balloon. ✓</li> </ul> |
|     | [10]                                                                                                 |

### **QUESTION 6:**

| 6.1 | Minimum amount of energy required for a reaction to take place.                      | (2)  |
|-----|--------------------------------------------------------------------------------------|------|
| 6.2 | Endothermic√ more energy required than released √                                    |      |
| 6.3 | ENDOTHERMIC<br>Potential<br>energy<br>(kJ)<br>Potential<br>energy<br>Ea<br>Teactants |      |
|     | reaction pathway                                                                     |      |
|     | $\checkmark$ Correct shape (products higher than reactants)                          |      |
|     | ✓ Activation energy correctly indicated                                              |      |
|     | $\checkmark$ $\triangle$ H correctly indicated                                       |      |
|     | ✓ activation complex correctly indicated                                             |      |
|     | Axes not correctly labelled -1                                                       | (4)  |
| 6.4 | 2 x 167 √ = 334 kJ √                                                                 | (2)  |
| 6.5 | $2 \times 251 \checkmark = 502 \text{ kJ} \checkmark$                                | (2)  |
|     |                                                                                      | [12] |

# QUESTION 7:

| Acids a | & Bases maybe include some stoichiometry calculations                                                                 |      |
|---------|-----------------------------------------------------------------------------------------------------------------------|------|
| МН      |                                                                                                                       |      |
| 7.1     | Substance which can act as either an acid or a base.                                                                  | (2)  |
| 7.2     | HSO4-                                                                                                                 | (1)  |
| 7.3     | An acid is a proton donor.                                                                                            | (2)  |
| 7.4     | $H_2SO_4$ and $HSO_4^- \checkmark \checkmark$                                                                         |      |
|         | $H_2O$ and $H_3O^+ \checkmark \checkmark$                                                                             | (4)  |
| 7.5     | $2KOH + H_2SO_4 \longrightarrow K_2SO_4 + 2 H_2O$                                                                     |      |
|         | Reactants ✓                                                                                                           |      |
|         | Products ✓                                                                                                            |      |
|         | Balancing 🗸                                                                                                           | (3)  |
| 7.6     | Potassium sulphate                                                                                                    | (1)  |
| 7.7     | Neutralisation reaction                                                                                               | (1)  |
| 7.8.1   | Yellow to red                                                                                                         | (2)  |
| 7.8.2   | $\begin{array}{cccc} H_2SO_4 & + & 2 \text{ NH}_3 & \longrightarrow (\text{NH}_4)_2SO_4 \\ 1 & & 2 & & 1 \end{array}$ |      |
|         | n = cV<br>$n = 0,1 \times 0,05$<br>n = 0,005 mol                                                                      |      |
|         | n = 0,005 x 0,5<br>= 0,0025                                                                                           |      |
|         | c = n/V<br>c = 0,0025/0,025<br>$c = 0,1 \text{ mol.dm}^{-3}$                                                          | (5)  |
| 7.8.3   | $\begin{array}{cccc} H_2SO_4 & + & 2 \text{ NH}_3 & \longrightarrow (\text{NH}_4)_2SO_4 \\ 1 & & 2 & & 1 \end{array}$ |      |
|         | n = 0,0025 mol 🗸                                                                                                      |      |
|         | n = m/M<br>0,0025 = m/132 √<br>m = 0,33 g √                                                                           | (4)  |
|         |                                                                                                                       |      |
|         |                                                                                                                       | [25] |

### **QUESTION 8:**

| Redo | X                                                                                                                                                    |      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ΜН   |                                                                                                                                                      |      |
| 8.1  | Decrease in oxidation number.                                                                                                                        | (2)  |
| 8.2  | +6                                                                                                                                                   | (1)  |
| 8.3  | $Cr_2O_7^{2-}$                                                                                                                                       | (1)  |
| 8.4  | Reducing agent loses electrons.                                                                                                                      | (2)  |
| 8.5  | Fe <sup>2+</sup>                                                                                                                                     | (1)  |
| 8.6  | weaker                                                                                                                                               | (1)  |
| 8.5  | $Cr_2O_7^{2-}$ + 14 H <sup>+</sup> + 6 e <sup>-</sup> $\longrightarrow$ 2 Cr <sup>3+</sup> + 7 H <sub>2</sub> O                                      |      |
|      | $6 \operatorname{Fe}^{2+} \longrightarrow 6 \operatorname{Fe}^{3+} + 6 \operatorname{e}^{-} \checkmark x6 \checkmark$                                |      |
|      | $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \longrightarrow 2 Cr^{3+} + 7 H_2O + 6 Fe^{3+} + 14 OH^- + 14 OH^-$                                               |      |
|      | $Cr_2O_7^{2-}$ + 7 H <sub>2</sub> O + 6 Fe <sup>2+</sup> $\longrightarrow$ 2 Cr <sup>3+</sup> + 14 OH <sup>-</sup> + 6 Fe <sup>3+</sup> $\checkmark$ | (5)  |
|      |                                                                                                                                                      | [13] |

TOTAL SECTION B = [130]

# **Formula Sheet**

# Physical Constants:

| Name                        | Symbol         | Value                                                       |
|-----------------------------|----------------|-------------------------------------------------------------|
| Acceleration due to gravity | g              | 9,8 m.s <sup>-2</sup>                                       |
| Gravitational constant      | G              | 6,67 × 10 <sup>-11</sup> N.m <sup>2</sup> .kg <sup>-2</sup> |
| Radius of Earth             | R <sub>E</sub> | 6,38 × 10 <sup>6</sup> m                                    |
| Mass of Earth               | ME             | 5,98 × 10 <sup>24</sup> kg                                  |
| Speed of light in a vacuum  | с              | 3,0 × 10 <sup>8</sup> m.s <sup>-1</sup>                     |
| Planck's constant           | h              | 6,63 × 10 <sup>-34</sup> J.s                                |
| Coulomb's constant          | k              | 9,0 × 10 <sup>9</sup> N.m <sup>2</sup> .C <sup>-2</sup>     |
| Charge on electron          | е              | -1,6 × 10 <sup>-19</sup> C                                  |
| Electron mass               | m <sub>e</sub> | 9,11 × 10 <sup>-31</sup> kg                                 |
|                             |                |                                                             |
| Avogadro's constant         | NA             | 6,02 × 10 <sup>23</sup> mol <sup>-1</sup>                   |
| Molar gas constant          | R              | 8,31 J.K <sup>-1</sup> .mol <sup>-1</sup>                   |
| Standard pressure           | p <sup>θ</sup> | 1,013 × 10⁵ Pa                                              |
| Molar gas volume at STP     | Vm             | 22,4 dm <sup>3</sup> .mol <sup>-1</sup>                     |
| Standard temperature        | T <sup>θ</sup> | 273 K                                                       |

# Formulae:

# MOTION

| $v_f = v_i + a\Delta t$                                      | $\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \text{ or } \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$ |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $v_f^2 = v_i^2 + 2a\Delta x$ or $v_f^2 = v_i^2 + 2a\Delta y$ | $\Delta x = \left(\frac{v_f + v_i}{2}\right) \Delta t$ or $\Delta y = \left(\frac{v_f + v_i}{2}\right) \Delta t$    |

# FORCE

| $F_{net} = ma$              | w = mg                                                   |
|-----------------------------|----------------------------------------------------------|
| $f_s^{max} = \mu_s N$       | $f_k=\mu_k N$                                            |
| p = mv                      | $F_{net}\Delta t = \Delta p$<br>$\Delta p = mv_f - mv_i$ |
| $F = G \frac{m_1 m_2}{r^2}$ | $g = G \frac{M}{r^2}$                                    |

# WAVES, SOUND AND LIGHT

| $v = f \lambda$                         | $T = \frac{1}{f}$ |
|-----------------------------------------|-------------------|
| $n_i \sin \theta_i = n_r \sin \theta_r$ | $n = \frac{c}{v}$ |

# ELECTROSTATICS

| $F = \frac{kQ_1Q_2}{r^2}$ | $E = \frac{F}{q}$ |
|---------------------------|-------------------|
| $E = \frac{kQ}{r^2}$      | $n = \frac{Q}{e}$ |

# ELECTROMAGNETISM

| $\epsilon = -N \frac{\Delta \Phi}{\Delta t}$ | $\Phi = BA\cos\theta$ |
|----------------------------------------------|-----------------------|
|----------------------------------------------|-----------------------|

# **ELECTRIC CIRCUITS**

| $\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \cdots$     | $\mathbf{R} = \mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 + \cdots$   |
|----------------------------------------------------------------------------|----------------------------------------------------------------------|
| $W = Vq$ $W = VI\Delta t$ $W = I^2 R\Delta t$ $W = \frac{V^2 \Delta t}{R}$ | $P = \frac{W}{\Delta t}$ $P = VI$ $P = I^{2}R$ $P = \frac{V^{2}}{R}$ |

# CHEMISTRY

| $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$ | pV = nRT                                |
|---------------------------------------------|-----------------------------------------|
| $n = \frac{m}{M}$                           | $n = \frac{N}{N_A}$                     |
| $n = \frac{V}{V_m}$                         | $c = \frac{n}{V}$ or $c = \frac{m}{MV}$ |