

ALEXANDER ROAD HIGH SCHOOL

March 2021	PHYSICAL SCIENCES CONTROL TEST	50 MINUTES
JA	GRADE 11 MEMO	TOTAL = 50

QUESTION 1:

1.1 B ✓✓

1.2 D ✓✓

1.3 A ✓✓

1.4 C ✓✓

TOTAL SECTION A = [8]

2.1	A single vector having the same effect as two or more vectors together. $\checkmark \checkmark$ (2 or 0)
2.2	✓ 100N (direction & label) 100N
	✓ W (direction & label)
	✓ B (direction & label)
	$\checkmark \theta$
	W B (or T)
2.3	$W = mg \checkmark = (25)(9,8) \checkmark = 245 N$ downwards \checkmark (MUST INCLUDE DIRECTION)
2.4	$B^2 = (100)^2 + (245)^2 \checkmark$
	$B = 264,62 N \checkmark$
2.5	$\tan(\theta) = \frac{245}{100} \checkmark$
	$\theta = \tan^{-1}\left(\frac{245}{100}\right) = 67,80^{\circ}$
2.6	$B_x = 100 N \checkmark$ (to the right)
	$B = \frac{100}{\cos(60^{\circ})} \ddot{u} = 200 N$
	$F_g = \sqrt{(200)^2 - (100)^2} = 173,205 \dots N \checkmark$
	$m = \frac{173,205}{9,8} = 17,67 \ kg \checkmark$

3.1	A body will remain in its state of rest or motion at constant velocity unless a non-zero		
	net force acts on it. $\checkmark \checkmark$ (2 or 0)		
3.2	$ \begin{array}{c} \checkmark F_A \\ \checkmark F_g \\ \checkmark f_k \end{array} 70 \text{N (or } F_A) \end{array} \begin{array}{c} 70.\sin 40 \\ \text{(or } F_{A,y)} \end{array} \text{N (or } F_N) \\ OR \end{array} $		
	$ \begin{array}{c c} \checkmark N \\ \hline f_k \text{ (or } F_f) \\ (or \ F_{A,x}) \end{array} \begin{array}{c} f_k \text{ (or } F_f) \\ \end{array} $		
	W (or F_g) W (or F_g)		
3.3	$F_{net,y} = 0$		
	$N + F_{A,x} - F_g = 0$ \checkmark (mark is for summing the forces correctly and making = 0)		
	$N + 70. \sin 40^{\circ} - (10)(9,8) = 0$ \checkmark (mark is for calculating the y-component AND the weight correctly)		
	$N = 53 N \checkmark$		
3.4	$F_{A,x} = 70.\cos(40^\circ) \checkmark$		
	$F_{net,x}=0$		
	$f_k - F_{A,x} = 0$ $\mu_k = \frac{f_k}{N} \ddot{u}^{(\text{NO mark if no substitution into formula})}$		
	$f_k = F_{A,x} = 70.\cos 40^\circ = 53,62$ ü $\mu_k = \frac{53,62}{53} = 1,01$ ü		

4.1	The force that opposes the tendency of motion of a stationary object (relative to a surface). $\checkmark \checkmark$ (2 or 0)
4.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.3	$\mu_{s} = \frac{f_{s,max}}{N} \ddot{u}^{(\text{NO mark if no substitution into formula)}}$ $\mu_{s} = \frac{F_{g\parallel}}{F_{g\perp}} \ddot{u}^{(\text{mark for recognising } f_{s,max} = F_{g\parallel})}}{F_{g\perp}} = \frac{(65)(9,8)(\sin\theta)}{(65)(9,8)(\cos\theta)}}$ $0,6 = \tan\theta \ddot{u}$ $\theta = 30,96^{\circ} \ddot{u}$
4.4	REMAIN THE SAME. \checkmark The coefficient of static friction is constant for any pair of surfaces. \checkmark