ALEXANDER ROAD HIGH SCHOOL

March 2021
JA
PHYSICAL SCIENCES CONTROL TEST
GRADE 11 MEMO

QUESTION 1:

1.1 B $\checkmark \checkmark$
$1.2 \mathrm{D} \checkmark \checkmark$
1.3 A $\checkmark \checkmark$
$1.4 C \checkmark \checkmark$
TOTAL SECTION A = [8]

2.1	A single vector having the same effect as two or more vectors together. $\checkmark \checkmark$ (2 or 0)
2.2	
2.3	$W=m g \checkmark=(25)(9,8) \checkmark=245 N$ downwards \checkmark (MUST INCLUDE DIRECTION)
2.4	$\begin{aligned} & B^{2}=(100)^{2}+(245)^{2} \\ & B=264,62 N \end{aligned}$
2.5	$\begin{aligned} & \tan (\theta)=\frac{245}{100} \checkmark \\ & \theta=\tan ^{-1}\left(\frac{245}{100}\right)=67,80^{\circ} \end{aligned}$
2.6	$\begin{aligned} & B_{x}=100 \mathrm{~N} \checkmark \text { (to the right) } \\ & B=\frac{100}{\cos \left(60^{\circ}\right)} \text { ü }=200 \mathrm{~N} \\ & F_{g}=\sqrt{(200)^{2}-(100)^{2}}=173,205 \ldots \mathrm{~N} \\ & m=\frac{173,205 \ldots}{9,8}=17,67 \mathrm{~kg} \checkmark \end{aligned}$

3.1	A body will remain in its state of rest or motion at constant velocity unless a non-zero net force acts on it. $\checkmark \checkmark$ (2 or 0$)$
3.2	
3.3	$\begin{aligned} & F_{n e t, y}=0 \\ & N+F_{A, x}-F_{g}=0 \quad \checkmark \text { (mark is for summing the forces correctly and making = } 0 \text {) } \\ & N+70 \cdot \sin 40^{\circ}-(10)(9,8)=0 \checkmark \text { (mark is for calculating the } y \text {-component AND the weight correctly) } \\ & N=53 N \checkmark \end{aligned}$
3.4	

4.1	The force that opposes the tendency of motion of a stationary object (relative to a surface). $\checkmark \checkmark$ (2 or 0)			
4.2				
4.3	$\begin{aligned} & \mu_{s}=\frac{f_{s, m a x}}{N} \ddot{\mathrm{u}}^{(\text {NO mark if no substitution into formula) }} \\ & \mu_{s}=\frac{F_{g \\|} \ddot{\mathrm{u}}^{\left(\text {mark for recognising } f_{s, m a x}=F_{g\\| \\|}\right)}}{F_{g \perp} \ddot{\mathrm{u}}^{\left(\text {mark for recognising } N=F_{g \perp}\right)}}=\frac{(65)(9,8)(\sin \theta)}{(65)(9,8)(\cos \theta)} \\ & 0,6=\tan \theta \ddot{\mathrm{u}} \\ & \theta=30,96^{\circ} \ddot{\mathrm{u}} \end{aligned}$			
4.4	REMAIN THE SAME. The coefficient of static friction is constant for any pair of surfaces.			

