

ALEXANDER ROAD HIGH SCHOOL

| April 2021 | PHYSICAL SCIENCES CONTROL TEST | 55 MINUTES |
|------------|--------------------------------|------------|
| JA         | GRADE 11 MEMO                  | TOTAL = 50 |

- 1.1 D √√
  1.2 B √√
- 1.3 D ✓✓
- 1.4 C ✓✓
- 1.5 A ✓✓

[10]

- 2.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force ✓ at an acceleration directly proportional to the force and inversely proportional to the mass (of the object). ✓ (2)
- 2.2  $\sqrt{F_{\text{brakes}}} \sqrt{f_k} \sqrt{F_N} \sqrt{F_g}$   $F_{brakes}(or 2200 \text{ N}) / N \text{ (or F_N)}$   $f_k(or F_f)$   $W \text{ (or F_g)}$   $V \text{ (or F_g)}$  $V \text{ (or F_g$
- 2.3  $F_{g\perp} = (900)(9,8)(\cos 35,3^{\circ}) = 7\ 198,33\ N \checkmark$  $F_{g\parallel} = (900)(9,8)(\sin 35,3^{\circ}) = 5\ 096,70\ N \checkmark$ (2)
- 2.4  $f_k = \mu_k . N \checkmark$   $f_k = (0,17)(7\ 198,33) \checkmark^{\text{POSITIVE MARKING FROM 2.3}}$  $\therefore f_k = 1\ 233,72\ N \checkmark$ (3)
- 2.5  $F_{net} = ma$  or  $F_{g\parallel} F_{brake} f_k = ma \checkmark$   $5096,7 - 2\ 200 - 1\ 233,72 = (900)(a) \checkmark^{\text{POSITIVE MARKING FROM 2.3 & 2.4}}$  $\therefore a = 1,85\ m.\ s^{-2}$  down the hill  $\checkmark^{\text{MUST INCLUDE DIRECTION}}$  (3)

[14]

3.1 When object A exerts a force on object B, object B SIMULTANEOUSLY exerts an oppositely directed force of equal magnitude on object A.  $\checkmark \checkmark$  (2 or 0) (2)

3.2 
$$\checkmark T \checkmark f_k \checkmark F_N \checkmark F_g$$
  
 $f_k \text{ (or } F_f) \qquad T \text{ or } (F_T)$   
 $W \text{ (or } F_g)$ 
(4)

3.3.1  $F_{net} = ma \checkmark$ 

| 5kg trolley:                                    | 10kg block:                                                         |
|-------------------------------------------------|---------------------------------------------------------------------|
| $T-23 = 5a \checkmark^{\text{MARK FOR } T-f_k}$ | $(10)(9,8)\checkmark - T = 10a\checkmark^{\text{MARK FOR }F_g - T}$ |
| T = 5a + 23 (eqn. 1)                            | 98 - T = 10a (eqn. 2)                                               |

Sub eqn. 1 into eqn. 2:

$$98 - (5a + 23) = 10a \checkmark$$

$$15a = 75$$

$$\therefore a = 5 m \cdot s^{-2} \checkmark$$
(6)

3.3.2 
$$T = 5(5) + 23 \checkmark^{\text{POSITIVE MARKING FROM 3.3.1}}$$
  
 $\therefore T = 48 N \checkmark$  (2)

(1) **[15]** 

4.1 Each particle in the universe attracts every other particle with a gravitational force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centres.  $\checkmark \checkmark$  (2 or 0) (2)

4.2  

$$F = \frac{Gm_1m_2}{r^2} \checkmark$$

$$F = \frac{(6,67 \times 10^{-11})(6,39 \times 10^{23})(5,98 \times 10^{24}) \checkmark}{(2,80 \times 10^8 \times 10^3)^2 \checkmark}$$

$$\therefore F = 3,25 \times 10^{15} N \checkmark$$
(4)  
4.3  

$$W = mg \checkmark$$

$$W = F = \frac{Gm_1m_2}{r^2}$$

4.3 
$$W = mg \checkmark$$
  
 $W = (24,7)(9,8) \checkmark$   
 $\therefore W = 242,06 N \checkmark$   
 $W = F = \frac{Gm_1m_2}{r^2}$   
 $242,06 = \frac{(6,67 \times 10^{-11})(6,39 \times 10^{23})(65)}{(R_{Mars})^2} \checkmark$   
 $\therefore R_{Mars} = 3,38 \times 10^6 m \checkmark$ 
(5)

[11]