ALEXANDER ROAD HIGH SCHOOL

April 2021
PHYSICAL SCIENCES CONTROL TEST
55 MINUTES
JA
GRADE 11 MEMO
1.1 D $\checkmark \checkmark$
$1.2 B \quad \checkmark \checkmark$
$1.3 \mathrm{D} \checkmark \checkmark$
1.4 C $\checkmark \checkmark$
1.5 A $\checkmark \checkmark$
2.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force \checkmark at an acceleration directly proportional to the force and inversely proportional to the mass (of the object).
2.2 $\checkmark F_{\text {brakes }} \checkmark f_{k} \quad \checkmark F_{N} \quad \checkmark F_{g}$

$2.3 \quad F_{g \perp}=(900)(9,8)\left(\cos 35,3^{\circ}\right)=7198,33 N \checkmark$
$F_{g \|}=(900)(9,8)\left(\sin 35,3^{\circ}\right)=5096,70 N \checkmark$
$2.4 \quad f_{k}=\mu_{k} \cdot N \checkmark$
$f_{k}=(0,17)(7198,33) \vee$ POSITIVE MARKING FROM 2.3
$\therefore f_{k}=1233,72 N \checkmark$
$2.5 \quad F_{\text {net }}=m a \quad$ or $\quad F_{g \|}-F_{\text {brake }}-f_{k}=m a \checkmark$
$5096,7-2200-1233,72=(900)($ a) \checkmark POSITIVE MARKING FROM 2.3 \& 2.4
$\therefore a=1,85 \mathrm{~m} . \mathrm{s}^{-2}$ down the hill \checkmark MUST INCLUDE DIRECTION
3.1 When object A exerts a force on object B, object B SIMULTANEOUSLY exerts an oppositely directed force of equal magnitude on object A. $\checkmark \checkmark$ (2 or 0)
$3.2 \quad \checkmark T \quad \checkmark f_{k} \quad \checkmark F_{N} \quad \checkmark F_{g}$

3.3.1 $\quad F_{n e t}=m a \checkmark$

5kg trolley:		
10kg block:		
$T-23=5 a \checkmark^{\text {MARK FOR } T-f_{k}}$	$(10)(9,8) \checkmark-T=10 a \checkmark^{\text {MARK FOR } F_{g}-T}$	
$T=5 a+23$	\ldots (eqn. 1)	$98-T=10 a \quad \ldots$ (eqn. 2)

Sub eqn. 1 into eqn. 2:
$98-(5 a+23)=10 a \checkmark$
$15 a=75$
$\therefore a=5 \mathrm{~m} . \mathrm{s}^{-2} \checkmark$
3.3.2 $T=5(5)+23 \checkmark$ POSITIVE MARKING FROM 3.3.1
$\therefore T=48 N \checkmark$
3.4 DECREASE.
4.1 Each particle in the universe attracts every other particle with a gravitational force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centres. $\checkmark \checkmark$ (2 or 0)
$4.2 \quad F=\frac{G m_{1} m_{2}}{r^{2}}$
$F=\frac{\left(6,67 \times 10^{-11}\right)\left(6,39 \times 10^{23}\right)\left(5,98 \times 10^{24}\right) \checkmark}{\left(2,80 \times 10^{8} \times 10^{3}\right)^{2} \checkmark}$
$\therefore F=3,25 \times 10^{15} N \checkmark$
4.3 $\quad W=m g \checkmark$
$W=(24,7)(9,8) \checkmark$
$\therefore W=242,06 N \checkmark \quad 242,06=\frac{\left(6,67 \times 10^{-11}\right)\left(6,39 \times 10^{23}\right)(65)}{\left(\mathrm{R}_{\text {Mars }}\right)^{2}} \checkmark$
$\therefore R_{\text {Mars }}=3,38 \times 10^{6} \mathrm{~m} \checkmark$

