

#### **ALEXANDER ROAD HIGH SCHOOL**

MAY 2021

### PHYSICAL SCIENCES CONTROL TEST

50 MINUTES

MH GRADE 11 TOTAL = 45

## **Instructions:**

- The question paper consists of 6 questions.
- Answer all the questions.
- Answer section A on the answer sheet provided AND section B on folio sheets.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to two (2) decimal places where necessary.
- A formula sheet has been provided at the end of the question paper.
- A periodic table has been provided on the back of the answer sheet.

#### **SECTION A**

(answer on the answer sheet)

#### **QUESTION 1:**

Four possible options are provided as answers to the following questions. Each question has only one correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (1.1 - 1.4) on the answer sheet.

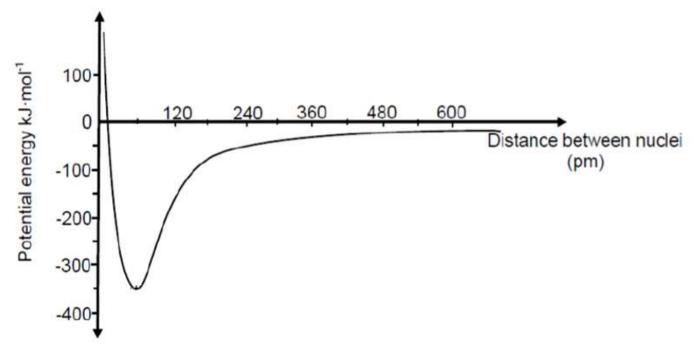
- 1.1 Intermolecular forces ...
  - A. hold the atoms together in a molecule.
  - B. are formed by sharing electrons.
  - C. are formed by transferring electrons.
  - D. hold molecules together in the gas, liquid or solid phase.
- 1.2 Hydrogen bonds and London forces have a common characteristic in that they ...
  - A. are both stronger than covalent bonds.
  - B. both occur between non-polar molecules.
  - C. both occur between polar molecules.
  - D. are both intermolecular forces.

| 1.3 | Which ONE of the following bromides will most likely have the most ionic character? |
|-----|-------------------------------------------------------------------------------------|
|     | A. LiBr                                                                             |
|     | B. CsBr                                                                             |
|     | C. BeBr <sub>2</sub>                                                                |
|     | D. CaBr <sub>2</sub>                                                                |
|     |                                                                                     |
| 1.4 | In which of the following cases will the solute dissolve in the solvent?            |
|     | A. NaCl in CCl <sub>4</sub>                                                         |
|     |                                                                                     |

B. O<sub>2</sub> in H<sub>2</sub>O

C. CCl<sub>4</sub> in H<sub>2</sub>O

D. LiNO<sub>3</sub> in H<sub>2</sub>O


**TOTAL SECTION A = [8]** 

### **SECTION B**

(answer on folio paper)

#### **QUESTION 2:**

The graph below shows the change in energy that takes place when a hydrogen (H) atom approaches a bromine (Br) atom.



- 2.1 Define the term *bond length*. (2)
- 2.2 How would the bond length of HCl compare to that of HBr?

  Write only LONGER THAN, SHORTER THAN or EQUAL TO. (1)
- 2.3 Give a reason for your answer in 2.2. (1)
- 2.4 Hence, how will the *bond energy* of HCl compare to that of HBr?
  Write only HIGHER THAN, LOWER THAN or EQUAL TO. (1)
- 2.5 From the graph, give the *bond energy* of HBr. (1)

# **QUESTION 3:**

- 3.1 Draw the Couper diagram for NH<sub>3</sub>. (1)
- 3.2 Consider the following and answer the questions that follow:

- 3.2.1 Give the name of the product. (1)
- 3.2.2 Name the type of bond formed between NH<sub>3</sub> and the H<sup>+</sup> ion. (1)

[3]

[6]

# **QUESTION 4:**

The bond energies for numerous bonds are given in kJ.mol<sup>-1</sup>. Answer the questions that follow.

| 1      | 2   | 3      | 4   | . 5     | 6   |
|--------|-----|--------|-----|---------|-----|
| H – H  | 436 | C - C  | 348 | F-F     | 155 |
| H – C  | 413 | C – CI | 326 | CI – CI | 243 |
| H – N  | 389 | C - O  | 335 | Br – Br | 190 |
| H – O  | 463 | CI – O | 205 | I-I     | 149 |
| H – CI | 431 | H - S  | 338 | H – Br  | 346 |

| Double<br>(bond o |     | Triple<br>(bond o |     |
|-------------------|-----|-------------------|-----|
| o = o             | 498 | N≡N               | 941 |
| c=c               | 619 | c≡c               | 845 |
| c=o               | 707 |                   |     |

- 4.1 Draw the Lewis diagrams for:
- 4.1.1 CH<sub>4</sub> (2)
- 4.1.2  $CO_2$  (2)
- 4.2 Calculate the *electronegativity difference* for the CO bond in CO<sub>2</sub>. (2)
- 4.3 What is the polarity of the CO<sub>2</sub> molecule? Write only POLAR or NON-POLAR.
- 4.4 Calculate the amount of energy needed to break all bonds in CH<sub>4</sub> (in (2) kJ.mol<sup>-1</sup>).
- 4.5 How much energy will be released when 2,5 moles of CO<sub>2</sub> form? (2)
- 4.6 Determine by calculation, whether the reaction of

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

is endothermic or exothermic. (6)

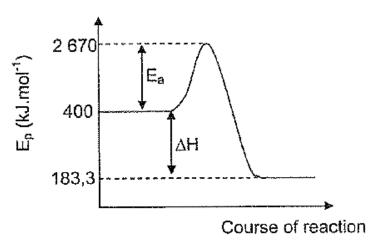
[17]

### **QUESTION 5:**

The reaction below is used in the Haber process to manufacture ammonia.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The boiling points of the substances in the reaction are as follows:


| SUBSTANCE       | BOILING POINT (°C) |
|-----------------|--------------------|
| H <sub>2</sub>  | -252,9             |
| N <sub>2</sub>  | -195,8             |
| NH <sub>3</sub> | -33,3              |

- Refer to the intermolecular forces and explain the difference in boiling points (3) of  $H_2$  and  $NH_3$ .
- 5.2.1 Give the *formula* of the molecule in the table that will have the highest vapour (1) pressure.
- 5.2.2 Give a reason for your answer in 5.2.1. by referring to the boiling points. (2)

# **QUESTION 6:**

The sketch below represents the potential energy graph for the reaction

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$



- 6.1 Define activation energy. (2)
- 6.2 Without calculating the *heat of the reaction*, state whether the reaction is (1) EXOTHERMIC OR ENDOTHERMIC.
- 6.3 Give a reason for your answer in 6.2. (1)
- 6.4 Make a rough sketch of the graph given and indicate the reaction path with a catalyst present. (1)

[5]

**TOTAL SECTION B = [37]** 

# **Formula Sheet**

# **Physical Constants:**

| Name                    | Symbol         | Value                                     |
|-------------------------|----------------|-------------------------------------------|
| Avogadro's constant     | N <sub>A</sub> | $6,02 \times 10^{23} \text{ mol}^{-1}$    |
| Molar gas constant      | R              | 8,31 J.K <sup>-1</sup> .mol <sup>-1</sup> |
| Standard pressure       | pθ             | 1,013 × 10⁵ Pa                            |
| Molar gas volume at STP | V <sub>m</sub> | 22,4 dm <sup>3</sup> .mol <sup>-1</sup>   |
| Standard temperature    | Τ <sup>θ</sup> | 273 K                                     |

# Formulae:

# **CHEMISTRY**

| $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$ | pV = nRT                                |
|---------------------------------------------|-----------------------------------------|
| $n = \frac{m}{M}$                           | $n = \frac{N}{N_A}$                     |
| $n = \frac{V}{V_{m}}$                       | $c = \frac{n}{V}$ or $c = \frac{m}{MV}$ |