TERM 12020
PHYSICAL SCIENCE CONTROL TEST (PART 1) MEMO
JA, PE
GRADE 11
1.1 C $\checkmark \checkmark$
1.2 $C \checkmark \checkmark$
1.3 A $\checkmark \checkmark$
$1.4 B \checkmark \checkmark$
$1.5 \mathrm{D} \checkmark \checkmark$
TOTAL SECTION A:
[10]
2.1 $\quad \checkmark \checkmark \checkmark \checkmark$ (one mark per force with correct label)

$2.2 \quad N=W=m . g=(0,5)(9,8)=4,9 N \checkmark$
$f_{k}=\mu_{k} . N \quad \checkmark^{\text {formula }} \quad$ (if the no substitution into the formula is made: -1 mark)
$(2,8) \checkmark^{f_{k}=F_{A}}=\mu_{k} .(4,9)$
$\mu_{k}=0,57 \quad \checkmark$ answer \quad (if a unit is given: -1 mark)
2.3.1 Decreases \checkmark
2.3.2 The horizontal component of the applied force decreases. \checkmark
$3.1 \quad R^{2}=S^{2}+T^{2}$ (Pythag.)
$R^{2}=1576,1661^{2}+910^{2}$
$R=1820 \mathrm{~N} \quad \checkmark$
3.2 The forces are in equilibrium.
$3.3 \quad W=m g \quad \checkmark$ formula
$1820=m(9,8) \quad \checkmark$ releasing $\mathrm{W}=\mathrm{R}$ and substitution into formula
$m=185,71 \mathrm{~kg} \quad \checkmark$ answer with unit
4.1 A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant/net force acts on it. $\checkmark \checkmark$ (2 or 0)
$4.2 \quad \checkmark \checkmark \checkmark$ (one mark per force with correct label)

4.3.1
$W_{\|}=W \cdot \sin \left(30^{\circ}\right)=(630) \cdot(9,8) \cdot \sin \left(30^{\circ}\right)=3087 N \quad \quad{ }^{W} W_{\|}$
$f_{s}-W_{\|}=0 \quad \checkmark^{\text {relationship between } f_{s} \text { and } W_{\|}}$
$f_{s}=W_{\|}$
$f_{s}=3087 \mathrm{~N} \quad \checkmark^{\text {answer with unit }}$
4.3.2.
$W_{\perp}=W \cdot \cos \left(30^{\circ}\right)=(630) \cdot(9,8) \cdot \cos \left(30^{\circ}\right)=5346,84 N \quad \checkmark^{W_{\perp}}$
$f_{s}=\mu_{S} . N \quad \checkmark$ formula
$4000=\mu_{S} .(5346,84) \quad \checkmark^{\text {releasing } \mathrm{fs}(\max)=4000 \mathrm{~N} \text { and substitution into formula }}$
$\mu_{s}=0,58 \quad \checkmark$ answer
4.4 DECREASES \checkmark
5.1 When a resultant/net force acts on an object, the object will accelerate in the direction
of the force \checkmark at an acceleration directly proportional to the force and inversely proportional to the mass of the object. \checkmark
5.2.1 Mass \checkmark
5.2.2 Acceleration \checkmark
5.2.3 (Resultant / Applied) Force \checkmark
5.3 What is the relationship between the mass of an object and its acceleration? $\checkmark \checkmark$
$5.4 \quad \frac{1}{m} \checkmark$
$5.5 \quad \frac{17-10 \checkmark}{3,3-2 \checkmark}=5,38 N \checkmark$

