ALEXANDER ROAD HIGH SCHOOL

TERM 1 2020

PHYSICAL SCIENCE CONTROL TEST (PART 1) MEMO

60 MIN

JA, PE

GRADE 11

TOTAL = 50

1.1 C ✓ ✓

- 1.2 C ✓✓
- 1.3 A ✓ ✓
- 1.4 B ✓ ✓
- 1.5 D ✓ ✓

TOTAL SECTION A: [10]

2.1 $\checkmark \checkmark \checkmark \checkmark \checkmark$ (one mark per force with correct label)

2.2 $N = W = m.g = (0,5)(9,8) = 4,9 N \checkmark$

$f_k = \mu_k. N $ $\checkmark^{\text{formula}}$	(if the no substitution into the formula is made: -1 mark)	
$(2,8) \checkmark^{f_k = F_A} = \mu_k. (4,9)$		
$\mu_k = 0,57$ $\checkmark^{\text{answer}}$	(if a unit is given: –1 mark)	(4)

- 2.3.1 Decreases ✓ (1)
- 2.3.2 The horizontal component of the applied force decreases. \checkmark

(1) **[10]**

(4)

- 3.1 $R^2 = S^2 + T^2$ (Pythag.) $R^2 = 1576,1661^2 + 910^2 \checkmark$ $R = 1820 N \checkmark$ (2)
- 3.2 The forces are in equilibrium. \checkmark (1)
- 3.3 W = mg $\checkmark^{\text{formula}}$ 1820 = m(9,8) $\checkmark^{\text{releasing W=R}}$ and substitution into formula $m = 185,71 \ kg$ $\checkmark^{\text{answer with unit}}$ (3) [6]

- A body will remain in its state of rest or motion at constant velocity unless a non-zero 4.1 (2) resultant/net force acts on it. $\checkmark \checkmark$ (2 or 0)
- $\checkmark \checkmark \checkmark$ (one mark per force with correct label) 4.2

4.3.1
$$W_{\parallel} = W.\sin(30^\circ) = (630).(9,8).\sin(30^\circ) = 3087 N$$
 $\checkmark^{W_{\parallel}}$ (3)

$$f_s - W_{\parallel} = 0$$
 \checkmark relationship between f_s and W_{\parallel}
 $f_s = W_{\parallel}$
 $f_s = 3087 N$ \checkmark answer with unit

4.3.2.
$$W_{\perp} = W.\cos(30^\circ) = (630).(9,8).\cos(30^\circ) = 5346,84 N$$
 $\checkmark^{W_{\perp}}$ (4)

$$f_{s} = \mu_{s}. N \qquad \checkmark^{\text{formula}}$$

$$4000 = \mu_{s}. (5346,84) \qquad \checkmark^{\text{releasing fs(max)=4000N and substitution into formula}}$$

$$\mu_{s} = 0.58 \qquad \checkmark^{\text{answer}}$$

$$\text{DECREASES} \checkmark \qquad (1)$$

[13]

(3)

(2) 5.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force ✓ at an acceleration directly proportional to the force and inversely proportional to the mass of the object. \checkmark Mass ✓ (1) 5.2.1 (1) 5.2.2 Acceleration ✓ (Resultant / Applied) Force ✓ 5.2.3 (1) What is the relationship between the mass of an object and its acceleration? $\checkmark\checkmark$ 5.3 (2) 5.4 $\frac{1}{m}\checkmark$ (1) $\frac{17 - 10 \checkmark}{3.3 - 2 \checkmark} = 5,38 \, N \checkmark$ 5.5 (3) [11]

> **TOTAL SECTION B:** [40]