Gr 11 Test Oct 2020 Blue MEMO

- 1.1 D
- 1.2 D
- 1.3 A
- 1.4 B
- 1.5 D
- 2.1 The electrostatic force between two charges is directly proportional to the product (of the magnitudes) of the charges and inversely proportional to the square of the distance between their centres. $\checkmark\checkmark$

2.2
$$F = \frac{kQ_1Q_2}{r^2} = \frac{(9 \times 10^9)(15 \times 10^{-9})(2 \times 10^{-9})}{(0,75)^2} = 4.8 \times 10^{-7} N$$

2.3 ✓ correct pattern / lines perpendicular to surface and curling
 ✓ correct direction of field lines

2.4
$$E = \frac{kQ}{r^2} \ddot{u}$$
$$E_{net} = E_P + E_Q \ddot{u}$$
$$E_{net} = \frac{(9 \times 10^9)(15 \times 10^{-9})}{(0,95)^2} \ddot{u} + \frac{(9 \times 10^9)(2 \times 10^{-9})}{(0,2)^2} \ddot{u}$$
$$E_{net} = 6 \times 10^2 N. C^{-1} \text{ to the right }\checkmark$$
(ACCEPT: 599,58)

2.5
$$E = \frac{F}{q} \checkmark$$

 $6 \times 10^2 = \frac{F}{1.6 \times 10^{-19}} \ddot{u}$
 $F = 9.6 \times 10^{-17} N$ to the right \checkmark
(ACCEPT: 9.59 × 10⁻¹⁷)

4.1 OH⁻ accepted a proton to form H₂O.
4.2 Na₂SO₄
4.3 Water
$$\checkmark$$
 (not H₂O)
4.4 H₂SO₄ \checkmark
H₂O \checkmark (6)
5.1 Reduction: decrease in oxidation number
5.2 SSO₂ + $\frac{10}{2}$ H₂O \rightarrow SSO₄²⁻ + $\frac{20}{4}$ H⁺ + $\frac{10}{2}$ e⁻ xs) (oxidation)
2MnO₄ + $\frac{10}{2}$ H⁺ + $\frac{10}{2}$ e⁻ \rightarrow SSO₄²⁻ + $\frac{10}{4}$ H⁺ + $\frac{10}{2}$ e⁻ xs) (oxidation)
5SO₂ + 2MnO₄⁻ + 2H₂O \rightarrow SSO₄²⁻ + 4H⁺ + 2Mn²⁺
+ 4OH⁻ + 4OH⁻ + 4OH⁻
5SO₂ + 2MnO₄⁻ + 2H₂O \rightarrow SSO₄²⁻ + 2H₂O + 2Mn²⁺
5.3 SO₂ \checkmark (8)

- 5.1 Ohm's law: the potential difference is directly proportional to the current strength \checkmark at constant temperature \checkmark
- 5.2 The energy per charge transferred between two points in a circuit $\sqrt{\sqrt{}}$

5.3.1 Rp =
$$\frac{R1 \times R2}{(R1 + R2)} \sqrt{= \frac{15 \times 25}{(15+25)}} \sqrt{= 9,375} \Omega \sqrt{$$

5.3.2 V = I R√

50= I (45) ✓

```
I = 1,11 A√
```

5.3.3 I₁₀₀ = 1,11 x
$$^{15\sqrt{}}/_{40\sqrt{}}$$
 = 0,416 A $\sqrt{}$ OR using V= I R

- 5.3.4 V increases√
- 5.3.5 R_{tot} decreases \checkmark , thus I increases, and V α I \checkmark
- 5.3.6 B and C equally bright \checkmark , A brighter than B and C \checkmark
- 5.4 Cost = kW x h x unit price \checkmark

$$38,13\sqrt{}=2 \times \frac{18}{60} \times 31\sqrt{} \times \text{ unit price}$$

Unit price = $R2,05\sqrt{}$