Gr 11 Test Oct 2020 Blue MEMO

1.1 D
1.2 D
1.3 A
1.4 B
1.5 D
2.1 The electrostatic force between two charges is directly proportional to the product (of the magnitudes) of the charges and inversely proportional to the square of the distance between their centres.
$2.2 \quad F=\frac{k Q_{1} Q_{2}}{r^{2}}=\frac{\left(9 \times 10^{9}\right)\left(15 \times 10^{-9}\right)\left(2 \times 10^{-9}\right)}{(0,75)^{2}}=4,8 \times 10^{-7} \mathrm{~N}$
2.3 $\quad \checkmark$ correct pattern / lines perpendicular to surface and curling
\checkmark correct direction of field lines
2.4 $E=\frac{k Q}{r^{2}} \ddot{\mathrm{u}}$
$E_{n e t}=E_{P}+E_{Q} \ddot{u}$
$E_{\text {net }}=\frac{\left(9 \times 10^{9}\right)\left(15 \times 10^{-9}\right)}{(0,95)^{2}} \ddot{u}+\frac{\left(9 \times 10^{9}\right)\left(2 \times 10^{-9}\right)}{(0,2)^{2}} \ddot{u}$
$E_{\text {net }}=6 \times 10^{2} \mathrm{~N} . \mathrm{C}^{-1}$ to the right \checkmark
(ACCEPT: 599,58)
$2.5 \quad E=\frac{F}{q} \downarrow$
$6 \times 10^{2}=\frac{F}{1,6 \times 10^{-19}}$ ü
$F=9,6 \times 10^{-17} N$ to the right \checkmark
(ACCEPT: $9,59 \times 10^{-17}$)
$41 \mathrm{OH}^{-}$accepted a proton to form $\mathrm{H}_{2} \mathrm{O}$
$42 \mathrm{Na}_{2} \mathrm{SO}_{4}$
4.3 water \checkmark (not $\mathrm{H}_{2} \mathrm{O}$)

5.1 Reduction decreast in oxidation number
$5255 \mathrm{O}_{2}+{ }_{2}^{10} \mathrm{H}_{2} \mathrm{O} \rightarrow 55 \mathrm{O}_{4}^{2-}+4 \mathrm{H}^{2+}+2 \mathrm{H}^{-} \times 5$ (oxidation)
$2 \mathrm{MnO}_{4}{ }^{-}+{ }^{2} \mathrm{~N}^{2} \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+\frac{8}{4} \mathrm{H}_{2} \mathrm{O} \times 2$ (reduction)
$5 \mathrm{SO}_{2}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{Mn}^{2+}$
$+4 \mathrm{OH}^{-}+4 \mathrm{OH}^{-}$
$5 \mathrm{SO}_{2}+2 \mathrm{MnO}_{4}^{-}+4 \mathrm{OH}^{-} \rightarrow 55 \mathrm{O}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Mn}^{2+}$
$5.3 \mathrm{SO}_{2}$
(8)
5.1 Ohm's law: the potential difference is directly proportional to the current strength \checkmark at constant temperature \checkmark
5.2 The energy per charge transferred between two points in a circuit $\checkmark \checkmark$
5.3.1 $R p=R 1 \times R 2 /(R 1+R 2) \checkmark=15 \times 25 /(15+25) \checkmark=9,375 \Omega \checkmark$
5.3.2 $V=I R \checkmark$
$50=I(45)$
$\mathrm{I}=1,11 \mathrm{~A} \checkmark$
5.3.3 $\quad \mathrm{I}_{10 \Omega}=1,11 \mathrm{x}^{15 \checkmark} / 40 \checkmark=0,416 \mathrm{~A} \checkmark \quad$ OR using V= I R
5.3.4 V increases \checkmark
5.3.5 $R_{\text {tot }}$ decreases \checkmark, thus I increases, and $V \alpha I \checkmark$
5.3.6 B and C equally bright \checkmark, A brighter than B and $C \checkmark$
5.4

$$
\begin{aligned}
\text { Cost } & =k W \times h \times \text { unit price } \checkmark \\
38,13 \checkmark & =2 \times 18 / 60 \times 31 \checkmark \times \text { unit price } \\
\text { Unit price } & =R 2,05 \checkmark
\end{aligned}
$$

