Gr 11 Test Oct 2020 Green MEMO

- 1.1 C
- 1.2 A
- 1.3 B
- 1.4 B
- 1.5 A
- 2.1 The electrostatic force between two charges is <u>directly proportional to the product (of the</u> <u>magnitude) of the charges</u> and <u>inversely proportional to the square of the distance</u> between their centres. ✓✓

2.2
$$F = \frac{kQ_1Q_2}{r^2} \checkmark = \frac{(9 \times 10^9)(12 \times 10^{-9})(3 \times 10^{-9})}{(0,625)^2} = 8,29 \times 10^{-7} N \checkmark$$

2.3 ✓ correct field pattern / lines perpendicular to surface of charge

 \checkmark correct field line direction

2.4
$$E = \frac{kQ}{r^2} \checkmark$$
$$E_{net} = E_Q - E_P \checkmark$$
$$E_{net} = \frac{(9 \times 10^9)(3 \times 10^{-9})}{(0,15)^2} \checkmark - \frac{(9 \times 10^9)(12 \times 10^{-9})}{(0,775)^2} \checkmark$$
$$E_{net} = 1,02 \times 10^3 N. C^{-1} \text{ to the right } \checkmark$$
(ACCEPT: 1020,19)

2.5
$$E = \frac{F}{q}$$

 $1,02 \times 10^3 = \frac{F}{1,6 \times 10^{-19}}$
 $F = 1,63 \times 10^{-16} N$ to the left \checkmark

41 HNO₃ will produce a hydronium ion in water.
42 Ca(NO₃)₂
$$\checkmark$$

43 water \checkmark (nat H₂O)
44 CaO
Ca(NO₃)₂ or NO₃⁻ \checkmark (positive marking from 4.2)
(b)
51 Oxidation increase in oxidation number.
350₂ + $\frac{1}{2}$ H₂O \rightarrow 350₄²⁻ + $\frac{1}{2}$ H⁺ + $\frac{1}{2}$ e x3(oxidation)
Cr₂O₇²⁻ + 14H⁺ + e² \rightarrow 2C³⁺ + 7H₂O (reduction)
1 350₂ + Cr₂O₇²⁻ + 2H⁺ \rightarrow 350₄²⁻ + 2Cr³⁺ + H₂O
+ 2OH⁻ + 2OH⁻ \checkmark
350₂ + Cr₂O₇²⁻ + H₂O \rightarrow 350₄²⁻ + 2Cr³⁺ + H₂O
(8)

- 5.1 Ohm's law: the potential difference is directly proportional to the current strength \checkmark at constant temperature \checkmark
- 5.2 Rate of flow of charge $\checkmark \checkmark$

5.3.1 Rp =
$$\frac{R1 \times R2}{(R1 + R2)} \checkmark = \frac{4 \times 8}{(4+8)} \checkmark = 2,67\Omega \checkmark$$

5.3.2 V = I R√

3,17= I (3) ✓

5.3.3 I₂₀ = 1,06 x
$$^{4/}/_{12}$$
 = 0,353 A \checkmark OR using V= I R

- 5.3.4 V decreases√
- 5.3.5 R_{tot} increases \checkmark , thus I decreases, and V α I \checkmark
- 5.3.6 Q and R equally bright \checkmark , P brighter than Q and R \checkmark
- 5.4 Cost = kW x h x unit price \checkmark

 $367,50^{\checkmark} = Q \times \frac{140}{60} \times 30^{\checkmark} \times 2,10$