

## **ALEXANDER ROAD HIGH SCHOOL**

FEBRUARY 2019

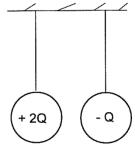
## **PHYSICAL SCIENCE CONTROL TEST 1**

50 MIN

EXAMINER: CO GRADE 12 TOTAL = 40

## **Instructions**

- The question paper consists of 3 questions.
- Answer all the questions.
- Answer section A on the answer sheet provided AND section B on folio paper.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to two (2) decimal places where necessary.
- A formula sheet is provided on the back of the A5 answer sheet.


## **QUESTION 1: Multiple choice (answer on the answer sheet)**

Four possible options are provided as answers to the following questions. Each question has only 1 correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (1.1 - 1.9) on the answer sheet.

- 1.1 A car travels EAST at constant velocity. The net force acting on the car is...
  - A to the east
  - B to the west
  - C zero
  - D to the south
- 1.2 A parcel lying on the front seat of a moving car moves forward when the car suddenly stops. This is an example of:
  - A Newton's first law of motion
  - B Newton's second law of motion
  - C Newton's third law of motion
  - D Newton's law of universal gravitation

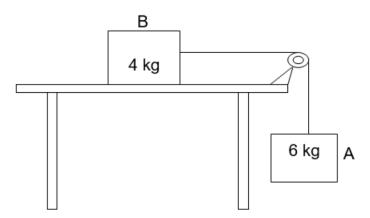
| 1.3 | Two masses, $m_1$ and $m_2$ , a distance $\bf r$ apart, experience a gravitational force of magnitude $\bf F$ . The magnitude of the gravitational force will change to 4 $\bf F$ if the distance between the masses change to: |                                                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|     | Α                                                                                                                                                                                                                               | ¼r                                                                      |
|     | В                                                                                                                                                                                                                               | ½r                                                                      |
|     | С                                                                                                                                                                                                                               | 2r                                                                      |
|     | D                                                                                                                                                                                                                               | 4r                                                                      |
| 1.4 | A person on planet A, having radius R, experiences a gravitational force F. When the person is on planet                                                                                                                        |                                                                         |
|     | B, having a radius 5R and the same mass as planet A, the gravitational force experienced will be:                                                                                                                               |                                                                         |
|     | Α                                                                                                                                                                                                                               | $\frac{1}{25}F$                                                         |
|     | В                                                                                                                                                                                                                               | $\frac{1}{5}F$                                                          |
|     | С                                                                                                                                                                                                                               | 5F                                                                      |
|     | D                                                                                                                                                                                                                               | 25F                                                                     |
| 1.5 | Three masses $m$ , $2m$ and $3m$ are simultaneously dropped from the same height in a vacuum. The acceleration of each mass is $a_1$ , $a_2$ and $a_3$ respectively.                                                            |                                                                         |
|     | Which ONE of the options below, regarding their accelerations, is correct?                                                                                                                                                      |                                                                         |
|     | A<br>B<br>C<br>D                                                                                                                                                                                                                | $a_1 < a_2 < a_3$ $a_1 > a_2 < a_3$ $a_1 < a_2 > a_3$ $a_1 = a_2 = a_3$ |
| 1.6 | A constant horizontal force F is applied to a box resting on a horizontal, frictionless surface.                                                                                                                                |                                                                         |
|     | Which ONE of the following statements regarding force F is CORRECT?                                                                                                                                                             |                                                                         |
|     | Force F will cause the box to move with                                                                                                                                                                                         |                                                                         |
|     | Α                                                                                                                                                                                                                               | constant acceleration.                                                  |
|     | В                                                                                                                                                                                                                               | constant velocity.                                                      |
|     | С                                                                                                                                                                                                                               | constant kinetic energy.                                                |
|     | D                                                                                                                                                                                                                               | constant momentum.                                                      |
| 1.7 | Two spheres, A and B, have charges of +1 C and +2 C respectively. They are brought into contact with                                                                                                                            |                                                                         |
|     | each other and then moved to their original positions.                                                                                                                                                                          |                                                                         |
|     | The amount of charge transferred is                                                                                                                                                                                             |                                                                         |
|     | Α                                                                                                                                                                                                                               | 0,5 C from B to A.                                                      |
|     | В                                                                                                                                                                                                                               | 0,5 C from A to B.                                                      |
|     | С                                                                                                                                                                                                                               | 1,5 C from B to A.                                                      |
|     | D                                                                                                                                                                                                                               | 1,5 C from A to B.                                                      |

Two small, identical, oppositely charged spheres with charges +2Q and -Q respectively, suspended from light inextensible strings, are held in fixed positions and prevented from touching. Refer to the diagram below:

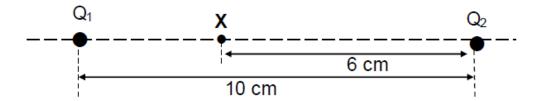


Which ONE of the following statements best describes the behaviour of the spheres when they are released?

- A They will move towards each other, touch each other momentarily and then separate.
- B They will move towards each other, touch each other momentarily and then remain in contact.
- C They will remain at their original positions and then vibrate.
- D They move away from each other momentarily and then move towards each other.
- 1.9 A point charge  $\mathbf{Q}_1$  carrying a charge of  $-\mathbf{q}$  is close to another point charge  $\mathbf{Q}_2$  carrying a charge of  $+2\mathbf{q}$ .




If the magnitude of the electrostatic force that  $Q_1$  exerts on  $Q_2$  is F, then the electrostatic force that  $Q_2$  exerts on  $Q_1$  is equal to ...


- A F directed towards Q<sub>2</sub>.
- B F directed towards Q<sub>1</sub>.
- C 2F directed towards Q<sub>2</sub>.
- D 2F directed towards Q<sub>1</sub>

[9x2=18]

2. A 4 kg block B, resting on a flat, rough horizontal table, is connected by a light inextensible string to a 6 kg block A. The string is passed over a light frictionless pulley in such a way that block A hangs vertically downwards as shown in the diagram below.



- 2.1 Write down Newton's **Second** Law of motion in words. (2)
- 2.2 Draw a free-body diagram of all forces acting on block B. (4)
- 2.3 The kinetic frictional force experienced by block B is 32,53 N to the left.Calculate the magnitude of the acceleration. (6)
- 2.4 Calculate the coefficient of kinetic friction between the surface of the table and block B. (3) [15]
- 3. The diagram below shows  $Q_1$  with a charge of +1,0 x 10<sup>-6</sup> C placed 10 cm from a charge  $Q_2$  with a charge of +2,0 x 10<sup>-6</sup> C.



- 3.1 State Coulomb's Law of Electrostatics in words. (2)
- 3.2 Calculate the net electrostatic force that an **electron** placed 6 cm from Q<sub>2</sub> at point X will experience.(5)

[7] [40]