ALEXANDER ROAD HIGH SCHOOL

JUNE 2021
PHYSICAL SCIENCES ASSESSMENT
3 HOURS
CO, JA, MH
GRADE 12
TOTAL = 150

PHYSICS

1.1 $C \checkmark \checkmark$
$1.2 B \quad B \checkmark$
$1.3 B \quad B \checkmark$
1.4 C $\checkmark \checkmark$

TOTAL SECTION A = [8]
2.1 When a resultant force acts on an object, the object will accelerate in the direction on net force. The acceleration is directly proportional to the net force and inversely proportional toe the mass of the object.
2.2

2.3.1 Up the incline as positive
$\mathrm{F}_{\text {net }}=$ ma
$\left.\mathrm{F}+\left(\mathrm{f}_{\mathrm{kA}}+\mathrm{f}_{\mathrm{ks}}+\mathrm{F}_{\mathrm{gl}}\right)=\mathrm{ma} \quad\right\} \quad$ Any ONE
$F+\left(f_{k A}+f_{k B}+m g \sin 30^{\circ}\right)=\left(m_{A}+m_{B}\right) a$
$F-\underline{6.8-3.4} \quad \checkmark-\underline{(12)(9.8) \sin 30^{\circ}} \downarrow=0 \checkmark$
$F=69 \mathrm{~N}$
2.3.2 $\quad \mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{N}}{ }^{\mathrm{r}}$
$3,40=\mu_{k}(4)(9,8) \cos 30^{\circ} \checkmark$
$\mu_{\mathrm{k}}=0,10 \checkmark$
2.4.1 Remain the same \checkmark
2.4.2 Decreases \checkmark

Since Θ increases, $F_{g \perp}$ decreases \checkmark, therefore F_{N} decreases $\checkmark / f_{k} \alpha F_{N} \checkmark$

QUESTION 3:

3.1 the change in frequency (or pitch) of the sound detected by a listener, because \checkmark the sound source and the listener have different velocities relative \checkmark to the medium of sound propagation.
3.2 $f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$
$\therefore f_{L}=\frac{340 \pm 0}{340-20} \vee(458) \vee$
$\therefore \mathrm{f}_{\mathrm{L}}=486,63 \mathrm{~Hz}$
3.3 Decreases \checkmark
3.4 Equal to,

Velocity of train driver relative \checkmark to the whistle is zero.
OR
Train driver has same \checkmark velocity as whistle. \checkmark
OR
There is no relative motion \checkmark between source and observer.
3.5 Decreases
3.6 Doppler flow meter \checkmark (or ultrasound)
3.7 The change in the observed frequency of light given off by far-away stars. \checkmark The light looks more red \checkmark, because the star is moving away from the observer and thus the colour shift to the red side of the spectrum.
4.1 A conservative force is a force for which the work done in moving an object between two points is independent of the path taken. $\checkmark \checkmark$ (2 or 0)
4.2 The net work done on an object is equal to the change in kinetic energy of the object. $\checkmark \checkmark$ (2 or 0$)$
[OR: The work done on an object by a net force is equal to the change in the kinetic energy of the object.]
4.3 Kinetic energy is converted into gravitational potential energy.

Chemical (potential) energy is converted into kinetic energy.
4.4.1 $\quad W_{n c}=\Delta E_{k}+\Delta E_{p}$
$W_{\text {engine }}=0+(410)(9,8)(3) \checkmark=12054 \mathrm{~J}$
$P_{\text {engine }}=\frac{W_{\text {engine }}}{\Delta t} \checkmark$
$P_{\text {engine }}=\frac{12054}{2}$
$P_{\text {engine }}=6027 \mathrm{~W} \checkmark$
$\begin{array}{ll}\text { 4.4.2 } & W_{\text {net }}=\Delta E_{k} \\ W_{\text {engine }}+W_{\text {friction }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \checkmark \quad\left[E_{k}+\Delta E_{p}\right] \\ \\ & \\ \left.F_{\text {engine }}+W_{\text {friction }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}+\Delta E_{p}\right] \\ (3527)(125)\left(\cos 00^{\circ}\right) \checkmark+W_{\text {friction }}=\left(\frac{1}{2}\right)(410)(35)^{2}-\left(\frac{1}{2}\right)(410)(20)^{2} \checkmark \\ & 440875+W_{\text {friction }}=169125\end{array}$
4.4.3 $\quad W_{\text {friction }}=f_{k} \Delta x \cos \theta$
$-271750=f_{k}(125)\left(\cos 180^{\circ}\right)$
$f_{k}=2174 N$

$$
\begin{array}{ll}
W_{\text {net }}=\Delta E_{k} & {\left[W_{n c}=\Delta E_{k}+\Delta E_{p}\right]} \\
F_{\text {net }} \Delta x \cos \theta=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \checkmark & {\left[W_{\text {wall }}+W_{\text {friction }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}+\Delta E_{p}\right]} \\
& \\
F_{\text {net }}(13)\left(\cos 180^{\circ}\right) \checkmark=0-\frac{1}{2}(410)(35)^{2} \checkmark \\
F_{\text {net }}=19317,31 N & {\left[F_{\text {wall }}(13)\left(\cos 180^{\circ}\right) \checkmark\right.} \\
& +(2174)(13)\left(\cos 180^{\circ}\right) \checkmark \\
F_{\text {wall }}+f_{k} \checkmark=19317,31 & \left.=0-\frac{1}{2}(410)(35)^{2}+0 \checkmark\right] \\
F_{\text {wall }}+2174=19317,31 & \tag{6}\\
&
\end{array}
$$

4.5 Non-conservative force.

CHEMISTRY

5.1 D $\checkmark \checkmark$
5.2 A $\checkmark \checkmark$
5.3 C $\checkmark \checkmark$
$5.4 B B \checkmark$
5.5 B $\checkmark \checkmark$
$5.6 \mathrm{D} \checkmark \checkmark$
6.1 Reaction rate is the change in concentration (or moles/mass/volume) of reactants/products per unit time. $\checkmark \checkmark$ (2 or 0)
6.2 How does the temperature affect reaction rate?
\checkmark BOTH the independent and dependent variable mentioned
\checkmark NO yes/no answer possible
6.3 - Surface area/state of division of $Z n$

- Concentration of HCl
- Volume of the solution

$$
\begin{equation*}
\checkmark \text { (any ONE) } \tag{1}
\end{equation*}
$$

6.4 Experiment 1.
6.5 Average Rate $=\frac{\Delta V}{\Delta t}=\frac{480-0 \checkmark}{540-0 \checkmark}=0,89 \mathrm{dm}^{3} . \mathrm{s}^{-1}$
6.6 INCREASES.

In the absence of impure particles there are more effective collisions per unit time.
$6.7 \quad n_{H_{2}}=\frac{V}{V_{m}} \checkmark=\frac{0,48}{24} \checkmark=0,02 \mathrm{~mol}$
$n_{Z n}=n_{H_{2}} \quad \checkmark=0,02 \mathrm{~mol}$
$m_{Z n}=n M=(0,02)(65) \checkmark=1,3 \mathrm{~g}$
$\therefore \%$ Purity $=\frac{\text { pure mass }}{\text { total mass }} \times 100=\frac{1,3}{2} \times 100=65 \% \checkmark$
$6.8 \quad \checkmark$ Reactant energy > product energy
\checkmark Activation energy (drawn \& labelled)
\checkmark Heat of reaction (labelled)
7.1 When the equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance. $\checkmark \checkmark(2$ or 0$)$
7.2.1 By Le Chatelier's principle, a decrease in the amount of CO_{2} will favour the reverse reaction \checkmark since the reverse reaction produces $\mathrm{CO}_{2} \checkmark$.
7.2.2 Forward reaction.
7.2.3 $\quad K_{C}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \checkmark}{[\mathrm{CO}]_{2} \checkmark}$
7.3 The Haber-Bosch process is used to produce over 175 million tonnes of ammonia $\left(\mathrm{NH}_{3}\right)$ each year in an industry estimated to be worth over $\$ 100$ billion. The balanced equation for the Haber-Bosch process is

$$
\mathrm{N}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{(\mathrm{g})} \quad \Delta \mathrm{H}<0
$$

7.3.1 EXOTHERMIC.
7.3.2 INCREASE.

- Since the equilibrium constant decreased, there are more reactants than products.
- \therefore The reverse reaction was favoured
- Since reverse reaction is the endothermic reaction, the endothermic reaction was favoured.
- Since an increase in temperature always favours the endothermic reaction, the temperature was increased.
7.3.3
$n=\frac{V}{V_{m}} \quad \checkmark=\frac{0,896}{22,4} \checkmark=0,04 \mathrm{~mol}$

	N_{2}	$+3 \mathrm{H}_{2}$	$\rightleftharpoons 2 \mathrm{NH}_{3}$	
$n_{i}(\mathrm{~mol})$	0,07	0,15	0	\checkmark
$\Delta n(\mathrm{~mol})$	$-0,02$	$-0,06$	$+0,04$	\checkmark
$n_{e q}(\mathrm{~mol})$	0,05	0,09	0,04	\checkmark
$c=\frac{n}{V}$ $\left(\mathrm{~mol} . \mathrm{dm}^{-3}\right)$	$\frac{0,05}{0,5}=0,1$	$\frac{0,09}{0,5}=0,18$	$\frac{0,04}{0,5}=0,08$	\checkmark

$$
\begin{equation*}
K_{C}=\frac{\left[N H_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}} \checkmark=\frac{(0,08)^{2}}{(0,1)(0,18)^{3}}=10,97 \tag{8}
\end{equation*}
$$

8.1 The substance that is used up.

The substance that determines the amount of product formed.
8.2

$\mathrm{AgNO}_{3}+$	$\mathrm{KCl} \longrightarrow$	AgCl	$+\mathrm{KNO}_{3}$
1	1	1	1
$\mathrm{n}=\mathrm{cV} \checkmark$	$\mathrm{n}=\mathrm{cV}$		$\mathrm{n}=0,0125 \mathrm{~mol} \checkmark$
$\mathrm{n}=0,2(0,065) \checkmark$	$\mathrm{n}=0,25(0,5) \checkmark$		$\mathrm{m}=\mathrm{nM} \checkmark$
$\mathrm{n}=0,013$	$\mathrm{n}=0,0125$		$m=0,0125(101) \checkmark$
			$\mathrm{m}=1,26 \mathrm{~g} \checkmark$

8.3 \%yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100$

$$
\begin{align*}
& =\frac{0,9}{1,26} \times 100 \tag{2}\\
& =71,43 \%
\end{align*}
$$

QUESTION 9:

9.1 A proton acceptor.
$9.2 \quad \mathrm{NH}_{3}$ and $\mathrm{NH}_{4}{ }^{+}$or $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{OH}^{-} \checkmark$
9.3 A substance that can act as an acid or a base. $\checkmark \checkmark$
$9.4 \quad \mathrm{H}_{2} \mathrm{O} \checkmark$
9.5 $\quad \mathrm{H}_{2} \mathrm{O}$ acts as a base in reaction $1 \checkmark$ and an acid in reaction $2 . \checkmark$
9.6.1 $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=-\log [0,15]$
$\mathrm{pOH}=0,8239 \ldots$
$\mathrm{pH}=14-\mathrm{pOH} \checkmark$
$\mathrm{pH}=14-0,8239 \ldots$
$\mathrm{pH}=13,18 \quad \checkmark$
9.6.2

X
1

NaOH

1

$$
\mathrm{n}=\mathrm{cV}
$$

$$
n=0,15(0,027)
$$

$$
\mathrm{n}=4,05 \times 10^{-3}
$$

$\mathrm{n}=4,05 \times 10^{-3} \checkmark$
$\mathrm{c}=\frac{n}{V}$
$c=\frac{4.05 \times 10^{-3}}{0,025} \checkmark$
$\mathrm{c}=0,165 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \checkmark$

9.7 Weak base \checkmark

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<$acid] $\left(\mathrm{K}_{\mathrm{a}}<1\right)$

Does not fully ionise.
9.8 Phenolphthalein $\checkmark \quad$ L2 (1)
9.9 Reaction of a salt with water. $\checkmark \checkmark$
$9.10 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \checkmark \mathrm{NH}_{3}+\mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \checkmark$ Balancing \checkmark L2 (3)
9.11 ACIDIC $\checkmark \quad$ L2 (1)

