ALEXANDER ROAD HIGH SCHOOL

JUNE 2021
PHYSICAL SCIENCES ASSESSMENT
CO, JA, MH
GRADE 12
TOTAL = 150

Instructions:

- The question paper consists of 9 questions.
- Answer all the questions.
- Answer sections A and C on the answer sheet provided.
- Answer sections B and D on folio sheets.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to at least two (2) decimal places where necessary.
- A formula sheet has been provided at the end of the question paper.
- A periodic table has been provided on the back of the answer sheet.

PHYSICS

SECTION A

(answer on the answer sheet)

QUESTION 1:

Four possible options are provided as answers to the following questions. Each question has only one correct answer. Choose the correct answer and write the letter ($\mathrm{A}-\mathrm{D}$) next to the relevant question number (1.1-1.4) on the answer sheet.
1.1 When a car suddenly brakes, a package on the front seat slides forwards and falls onto the floor. This happened because...
A. ...there was a net force acting on the package pushing it forwards.
B. ...an object at rest will remain at rest unless a non-zero net force acts on it.
C. ...the inertia of the package resists a change in its motion.
D. ...for every action there is an equal reaction.
1.2 If Earth has a gravitational acceleration \mathbf{g}, then a planet with twice the mass but half the radius of Earth will have a gravitational acceleration of...
A. $\quad \mathbf{4 g}$
B. $8 \mathbf{g}$
C. $\quad 16 \mathrm{~g}$
D. $\quad 9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
1.3 A force \mathbf{F} pulls a box \boldsymbol{x} metres to the right. The force acts 30° to the horizontal as shown in the diagram below.

The work done by \mathbf{F} on the box is...
A. $\quad \mathrm{F} x$
B. $\mathrm{F} x \cos 30^{\circ}$
C. $\mathrm{F} x \sin 30^{\circ}$
D. 0 , i.e. F does no work on the box.
1.4 An astronomer observes that the light spectrum of a star has been red shifted. How has the observed frequency of light from the star and the distance between the star and the Earth changed?

	Observed Frequency of Light	Distance Between the Star and Earth
A.	Increased	Increased
B.	Increased	Decreased
C.	Decreased	Increased
D.	Decreased	Decreased

SECTION B
 (answer on folio paper)

QUESTION 2:

Two objects, \mathbf{A} and \mathbf{B}, of mass 8 kg and 4 kg respectively, are in contact. They lie on a plane inclined at 30° to the horizontal. A force, \mathbf{F}, applied parallel to the incline, pushes on the objects as shown in the diagram below. The magnitude of kinetic frictional force acting on object \mathbf{A} is $6,8 \mathrm{~N}$ and on object B is $3,4 \mathrm{~N}$.

2.1 State Newton's Second Law of motion in words.
2.2 Draw a labelled free-body diagram of the forces acting on \mathbf{B} as it moves up the inclined plane.
2.3 Calculate the:
2.3.1 Magnitude of \mathbf{F} if the system moves up the inclined plane at CONSTANT VELOCITY.
2.3.2 Coefficient of kinetic friction for \mathbf{B}.
2.4 The angle between the incline and the horizontal changes to 35°.
2.4.1 How will the answer in QUESTION 2.3.2 be affected?

Write down INCREASES, DECREASES or REMAIN THE SAME.
2.4.2 How will the magnitude of the kinetic frictional force on object \mathbf{B} be affected? Write INCREASES, DECREASES or REMAIN THE SAME.

Explain your answer.

QUESTION 3:

A train approaches a station at a constant speed of $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ with its whistle blowing at a frequency of 458 Hz . An observer, standing on the platform, hears a change in pitch as the train approaches him, passes him and moves away from him.
3.1 State the phenomenon that explains the change in pitch heard by the observer.
3.2 Calculate the frequency of the sound that the observer hears while the train is approaching him. Use the speed of sound in air as $340 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
3.3 How will the observed frequency change as the train passes and moves away from the observer?
Write down only INCREASES, DECREASES or REMAINS THE SAME.
3.4 How will the wavelength observed by the train driver compare to that of the sound waves emitted by the whistle? Write down only GREATER THAN, EQUAL TO or LESS THAN. Give a reason for the answer.
3.5 If a whistle with a lower frequency is used by the train and the train's velocity increases by $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ as it passes the observer, how will the observed frequency change?
Write down only INCREASES, DECREASES or REMAINS THE SAME.
3.6 Name one use of this phenomenon in the field of medicine.
3.7 How do we know the universe is expanding?

QUESTION 4:

As part of a stunt, a 410 kg monster truck drives up a smooth, inclined ramp $\mathbf{A B}$ at a constant speed of $20 \mathrm{~m} . \mathrm{s}^{-1}$ taking 2 s to reach \mathbf{B} which is 3 m above the ground as shown in the diagram below. (The diagram is not drawn to scale).

A

Upon reaching B, the truck accelerates along a rough, horizontal plane BCD reaching a velocity of $35 \mathrm{~m} . \mathrm{s}^{-1}$ to the right at \mathbf{C}. From \mathbf{B} to \mathbf{C} the average forward force exerted by the monster truck's engine is 3527 N and the distance is 125 m .

The monster truck collides with a brick wall at \mathbf{C}, which instantaneously destroys the engine, and comes to rest in 13 m at \mathbf{D}. Ignore the effects of air resistance and any deformation that may occur as the monster truck collides with the wall.
4.1 Define the term conservative force.
4.2 State the work-energy theorem in words.
4.3 State the two energy conversions that take place as the monster truck moves from \mathbf{B} to \mathbf{C}.
4.4 Calculate:
4.4.1 The average power produced by the monster truck's engine to move the monster truck up the inclined ramp AB.
4.4.2 The maximum heat (in J) produced by the monster truck's wheels from \mathbf{B} to \mathbf{C}.
$\begin{array}{ll}\text { 4.4.3 } & \text { The average force exerted by the wall on the monster truck as the monster } \\ \text { truck moves from } \mathbf{C} \text { to } \mathbf{D} \text {. Use energy principles to determine the answer. }\end{array}$
4.5 Is the force calculated in question 4.4.3 a NON-CONSERVATIVE or a CONSERVATIVE force?

CHEMISTRY

SECTION C

(answer on the answer sheet)

QUESTION 5:

Four possible options are provided as answers to the following questions. Each question has only one correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (5.1-5.6) on the answer sheet.
5.1 The following Maxwell-Boltzmann distribution curve is drawn for a sample of a substance at $410^{\circ} \mathrm{C}$.

Which ONE of the following curves correctly depicts the same sample at $340^{\circ} \mathrm{C}$?

5.2 Chemical equilibrium is defined as...
A. ...a dynamic equilibrium in which the rate of the forward reaction is equal to the rate of the reverse reaction.
B. ...a dynamic equilibrium in which both the forward and reverse reaction have both simultaneously stopped.
C. ...a dynamic equilibrium in which the concentration of the products must be equal to the concentration of the reactants.
D. ...a dynamic equilibrium in which products can be converted back to reactants and vice versa.
5.3 Consider the following chemical equilibrium and the associated mole-time graph:

$$
2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \quad \Delta \mathrm{H}<0
$$

At exactly 100 s :
A. The temperature was increased.
B. The pressure was decreased
C. The amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ was increased.
D. The amount of NO_{2} was increased.
$5.4 \quad 250 \mathrm{~cm}^{3}$ nitrogen is added to an excess of hydrogen gas to form ammonia. The reaction takes place at a temperature of 500 K and a pressure of 600 kPa . What is the volume of the ammonia produced? Assume all the nitrogen reacts.
A. $\quad 250 \mathrm{~cm}^{3}$
B. $\quad 500 \mathrm{~cm}^{3}$
C. $166,67 \mathrm{~cm}^{3}$
D. $5 \mathrm{dm}^{3}$
5.5 A sulphuric acid solution, $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$, and an oxalic acid solution, $(\mathrm{COOH})_{2_{(a q)}}$, of EQUAL CONCENTRATIONS are compared. How do the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration and pH of $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$ solution compare to that of $(\mathrm{COOH})_{2(\mathrm{aq})}$ solution?

	$\left[\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}\right]$of $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}_{(a q)}}$ solution	$\mathbf{p H}$ of $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}_{(\mathbf{a q})}}$ solution
A	Higher than	Higher than
B	Higher than	Lower than
C	Equal to	Equal to
D	Higher than	Equal to

5.6 Consider the reactant X in the following reaction:

$$
\mathrm{X}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}
$$

The formula for X is:
A. $\quad \mathrm{PO}_{4}^{3-}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C. $\quad \mathrm{HPO}_{4}^{2-}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$

SECTION D
 (answer on folio paper)

QUESTION 6:

Scientists react 2 g of Zn with excess $\mathrm{HC} \ell$ to produce H_{2} gas according to the following balanced chemical equation.

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

The scientists then repeat the experiment keeping all variables EXCEPT the temperature the same as before. The volume of H_{2} gas produced every 60 s is measured for both experiments and plotted to obtain the following graph:

6.1 Define reaction rate.
6.2 Write an investigative question for the experiments.
6.3 Name one control variable.
6.4 Which experiment was conducted at a higher temperature?

Use the graph to give a reason for your answer.
6.5 Calculate the average reaction rate for experiment 2.
6.6 If the 2 g of Zn contained no impurities, how would the average reaction rate for experiment 2 change? Write only INCREASES, DECREASES or REMAINS THE SAME. Give a reason for your answer.
6.7 Experiment 2 was conducted at room temperature. If the molar volume of H_{2} at room temperature is $24 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$, calculate the percentage purity of the Zn used in the reaction.
6.8 Sketch the potential energy diagram for the reaction if it is exothermic. Indicate the activation energy and heat of reaction on the sketch.

QUESTION 7:

7.1 State Le Chatelier's principle.
7.2 Inside any bottle of fizzy drink (like Coke), the following dynamic equilibrium is occurring

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{f})} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}
$$

7.2.1 If the lid of the bottle is opened slightly some of the CO_{2} will escape. Explain how this change will affect the equilibrium using Le Chatelier's principle.
7.2.2 Which reaction will be favoured if the volume of the bottle is decreased?
7.2.3 Write an expression for calculating the equilibrium constant for this reaction.
7.3 The Haber-Bosch process is used to produce over 175 million tonnes of ammonia $\left(\mathrm{NH}_{3}\right)$ each year in an industry estimated to be worth over $\$ 100$ billion. The balanced equation for the Haber-Bosch process is

$$
\mathrm{N}_{2_{(\mathrm{g})}}+3 \mathrm{H}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}<0
$$

7.3.1 Is the forward reaction ENDOTHERMIC or EXOTHERMIC?
7.3.2 The equilibrium constant at a particular temperature is 50,7. The temperature is then changed resulting in a new equilibrium constant of 4,63. Did the temperature INCREASE or DECREASE? Explain your answer.
7.3.3 $0,07 \mathrm{~mol}_{2}$ reacts with $0,15 \mathrm{~mol}_{\mathrm{H}}$ in a $0,5 \mathrm{dm}^{3}$ container at $0^{\circ} \mathrm{C}$. At equilibrium
it is found that $896 \mathrm{~cm}^{3} \mathrm{NH}_{3}$ is present at STP. Calculate K_{c} at $0^{\circ} \mathrm{C}$.

QUESTION 8:

If a solution of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ is mixed with a solution of potassium chloride (KC $)$, a precipitate of silver chloride $(\mathrm{AgC} \ell)$ is produced according to the following reaction:

$$
\mathrm{AgNO}_{(\mathrm{aq})}+\mathrm{KCl}_{(\mathrm{aq})} \rightarrow \operatorname{AgCl}(\mathrm{s})+\mathrm{KNO}_{(\mathrm{aq})}
$$

$50 \mathrm{~cm}^{3}$ of a $\mathrm{KC} \ell$ solution with a concentration of $0,25 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ is added to $65 \mathrm{~cm}^{3}$ of a AgNO_{3} solution with a concentration of $0,2 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$.
8.1 Define the term limiting reagent.
8.2 Calculate the mass of the $\mathrm{AgC} \ell$ which is theoretically expected to form.

The precipitate is filtered, dried and measured and it is found that $0,9 \mathrm{~g}$ of $\mathrm{AgC} \ell$ formed.
8.3 Calculate the percentage yield of the reaction.
[11]

QUESTION 9:

Consider the balanced equations for water with nitric acid and ammonia below:
Reaction 1:

$$
\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{NO}_{3(\mathrm{aq})}^{-}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}
$$

Reaction 2: $\quad \mathrm{NH}_{3_{(\mathrm{aq})}}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
9.1 Define a base in terms of the Lowry-Brønsted theory.
9.2 Write down the FORMULA of ONE conjugated acid-base pair in Reaction 2.
9.3 Define the term ampholyte.
9.4 Write down the FORMULA of a substance that acts as an ampholyte in the reactions above.
9.5 Explain your answer in 9.4 by referring to the role of the substance in Reaction 1 and Reaction 2.
X is a monoprotic acid. A sample of acid X is titrated with a standard sodium hydroxide (NaOH) solution using a suitable indicator. At the endpoint it is found that $25 \mathrm{~cm}^{3}$ of acid X is neutralised by $27 \mathrm{~cm}^{3}$ of the NaOH solution of concentration $0,15 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$. Calculate:
9.6.1 The pH of the NaOH solution.
9.6.2 The concentration of acid X.
9.7 The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in the sample of acid Y is found to be $1,5 \times 10^{-3} \mathrm{~mol}^{2} \mathrm{dm}^{-3}$. Is Y a STRONG or a WEAK acid?

Give a reason for your answer.

9.8 Based on your answer in 9.7, suggest a suitable indicator for the titration.
9.9 Define hydrolysis in terms of salts.
9.10 Write down the balanced equation for the hydrolysis of $\mathrm{NH}_{4} \mathrm{Cl}$.
9.11 Will a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ be ACIDIC or ALKALINE?

ITS FIMMTMUS

Formula Sheet

PHYSICS

Physical Constants:

Name	Symbol	Value
Acceleration due to gravity	g	$9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
Gravitational constant	G	$6,67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} . \mathrm{kg}^{-2}$
Radius of Earth	R_{E}	$6,38 \times 10^{6} \mathrm{~m}$
Mass of Earth	M_{E}	$5,98 \times 10^{24} \mathrm{~kg}$
Speed of light in a vacuum	c	$3,0 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}$
Planck's constant	h	$6,63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Coulomb's constant	k	$9,0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} . \mathrm{C}^{-2}$
Charge on electron	e	$-1,6 \times 10^{-19} \mathrm{C}$
Electron mass	m_{e}	$9,11 \times 10^{-31} \mathrm{~kg}$

Formulae:

MOTION

$v_{f}=v_{i}+a \Delta t$	$\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$	$\Delta x=\left(\frac{v_{i}+v_{f}}{2}\right) \Delta t$

$F_{n e t}=m a$	$w=m g$
$f_{s}^{\max }=\mu_{s} N$	$f_{k}=\mu_{k} N$
$F=G \frac{m_{1} m_{2}}{r^{2}}$	$g=G \frac{M}{r^{2}}$

WORK, ENERGY AND POWER

$W=F \Delta x \cos \theta$	$E_{p}=m g h$
$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$	$\mathrm{~W}_{\mathrm{net}}=\Delta \mathrm{E}_{\mathrm{k}}$
$\Delta \mathrm{E}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}, \mathrm{f}}-\mathrm{E}_{\mathrm{k}, \mathrm{i}}$	
$\mathrm{W}_{\mathrm{nc}}=\Delta \mathrm{E}_{\mathrm{k}}+\Delta \mathrm{E}_{\mathrm{p}}$	$\mathrm{P}=\frac{\mathrm{W}}{\Delta \mathrm{t}}$
$\mathrm{P}_{\mathrm{ave}}=\mathrm{F} \cdot \mathrm{v}_{\mathrm{ave}}$	

WAVES, SOUND AND LIGHT

$$
\begin{array}{c|c}
v=f \lambda & T=\frac{1}{f} \\
\hline f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s} & E=h f \text { or } E=\frac{h c}{\lambda}
\end{array}
$$

Formula Sheet

CHEMISTRY

Physical Constants:

Name	Symbol	Value
Avogadro's constant	N_{A}	$6,02 \times 10^{23} \mathrm{~mol}^{-1}$
Standard pressure	p^{θ}	$1,013 \times 10^{5} \mathrm{~Pa}$
Molar gas volume at STP	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$
Standard temperature	T^{θ}	273 K

Formulae:

CHEMISTRY

$n=\frac{m}{M}$	$n=\frac{N}{N_{A}}$
$c=\frac{n}{V} \quad$ or $\quad c=\frac{m}{M V}$	$n=\frac{V}{V_{m}}$
$\frac{c_{a} V_{a}}{c_{b} V_{b}}=\frac{n_{a}}{n_{b}}$	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$	
at 298 K	

