1.6 C $\checkmark \checkmark$
1.7 A $\checkmark \checkmark$
1.8 B $\checkmark \checkmark$
1.9 A $\checkmark \checkmark$
$1.10 \quad C \checkmark \checkmark$
2.1 When a net force acts on an object, the object will accelerate in the direction of the force \checkmark and the acceleration is directly proportional to the (net) force and inversely proportional to the mass of the object.
$2.2 \quad \checkmark \mathrm{~F}_{\mathrm{A}} \quad \checkmark \mathrm{F}_{\mathrm{N}} \quad \checkmark \mathrm{Fg}_{\mathrm{g}} \quad \checkmark \mathrm{fk}_{\mathrm{k}} \quad \checkmark \mathrm{T}$
(1 mark per force with correct orientation and label)
$2.3 \quad 9 \mathrm{~kg}$ box:
$f_{k}=\mu_{k} N$
$f_{k}=(0,45)(9)(9,8)\left(\cos 10^{\circ}\right) \checkmark$
$\left(\therefore f_{k}=39,09 \ldots N\right)$
$T-F_{g_{\|}}-f_{k}=0 \checkmark$
$T=(9)(9,8)\left(\sin 10^{\circ}\right)+39,09 \ldots$ \checkmark

12 kg box:
($\therefore T=54,403 \ldots$)

$$
\begin{align*}
& F_{A}-F_{g_{\|}}-T-f_{k}=0 \checkmark \\
& f_{k}=120-(12)(9,8)\left(\sin 10^{\circ}\right)-54,4 \ldots \\
& \therefore f_{k}=45,18 \mathrm{~N} \tag{7}
\end{align*}
$$

2.4
$\mu_{k}=\frac{f_{k}}{N} \sqrt{ }=\frac{45,18}{(12)(9,8)\left(\cos 10^{\circ}\right)} \sqrt{ }=0,39 \sqrt{ }$
2.5 - Use boxes made from a smoother material.

- Wet the surface of the slope.
- Construct the slope with a smoother material. \checkmark (ANY ONE)
2.6 NO.

The coefficient of friction for the two boxes is not the same indicating they are made from different materials (with one material rougher than the other).
3.1 An object on which the only force acting is gravity.
3.2
$v_{f}^{2}=v_{i}^{2}+2 a \Delta y$
$0^{2}=(-5)^{2}+2(9,8) \Delta y$
$\Delta y=1,2755 \ldots . m$

Maximum height $=20+1,2755 \ldots=21,28 \mathrm{~m}$
3.3

Ball A: $\Delta y=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$

$$
\begin{aligned}
& \text { Height }=\Delta y-20=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \\
& \Delta y=5 x-4,9 x^{2}+20
\end{aligned}
$$

Ball B: Height $=\Delta y=14 x-4,9 x^{2}$
$5 x-4,9 x^{2}+20=14 x-4,9 x^{2}$
$x=2,22 s$
$\Delta y=14(2,22)-4,9(2,22)^{2}=6,91 m$
3.4

Axis with units
y-coordinates when starting bounce
y-coordinates when ending bounce \checkmark
x-intercepts \checkmark
x-readings at 2 s and end
4.1 In an isolated system, total linear momentum is conserved.
4.2

$$
\begin{align*}
& m_{T} v_{T}+m_{C} v_{T}=m_{W} v_{W} \\
& 3500(28) \checkmark+750\left(-120 \times \frac{1000}{3600}\right) \checkmark=4250(v) \\
& v=17,18 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { east } \tag{5}
\end{align*}
$$

4.3

$$
\begin{align*}
\Sigma E_{k i} & =\frac{1}{2} m_{c} v_{c}^{2}+\frac{1}{2} m_{T} v_{T}^{2} \\
& =\frac{1}{2}(3500)(28)^{2}+\frac{1}{2}(750)(-33,33)^{2} \\
& =1372000 \mathrm{~J} \\
\Sigma E_{k f} & =\frac{1}{2}(4250)(17,18)^{2} \\
& =627198,85 \mathrm{~J} \\
\Sigma E_{k i} & \neq \Sigma E_{k f} \quad \therefore \text { inelastic } \tag{6}
\end{align*}
$$

4.4

$$
\begin{align*}
& F \Delta t=\Delta p \\
& \begin{aligned}
\text { Impulse } & =m\left(v_{f}-v_{i}\right) \\
& =750(17,18-(-33,33)) \\
& =37885 \mathrm{~N} . \mathrm{s}
\end{aligned}
\end{align*}
$$

5.1

$$
\begin{align*}
& E_{k}=E_{p}=m g h \\
& E_{k}=(0,25)(9,8)(0,6) \\
& \therefore E_{k}=1,47 \mathrm{~J} \tag{3}
\end{align*}
$$

$5.2 \quad E_{k}=1,47 J \checkmark+$ marking from 5.1
5.3.1 The work done by a net force (on an object) is equal to the change in kinetic energy (of the object).
OR The net work done is equal to the change in kinetic energy. $\checkmark \checkmark$ (2 or 0)
5.3.2 $\quad W_{n e t}=\Delta E_{k}=E_{k, f}-E_{k, i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \checkmark$
$(1,5)(0,3)\left(\cos 180^{\circ}\right) \checkmark=\left(\frac{1}{2}\right)(0,5)\left(v_{f}\right)^{2}-1,47 \checkmark+$ marking from 5.1
$\therefore v_{f}=2,02 \mathrm{~m} . \mathrm{s}^{-1} \checkmark$
5.4.1 A force for which the work done in moving an object between two points is independent of the path taken. $\checkmark \checkmark(2$ or 0$)$
5.4.2 Gravitational force.
5.4.3 $\quad W_{n c}=\Delta E_{k}+\Delta E_{p}$
$\left.\begin{array}{l}W_{f_{k}}=\left(E_{k, f}-E_{k, i}\right)+\left(E_{p, f}-E_{p, i}\right) \\ f_{k} \Delta x \cos \theta=\left(\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}\right)+\left(m g h_{f}-m g h_{i}\right)\end{array}\right\} \checkmark$ (any one)
$(1,5)(\Delta x)\left(\cos 180^{\circ}\right) \checkmark=0-\left(\frac{1}{2}\right)(0,5)(2)^{2} \checkmark+(0,5)(9,8)\left(\Delta x \sin 30^{\circ} \sqrt{ }\right)-0 \checkmark$
$-1,5 \Delta x=-1+2,45 \Delta x$
$\Delta x=0,25 \mathrm{~m} \checkmark$
5.5 $P=\frac{W}{\Delta t} \checkmark$
$P=\frac{(0,25)(9,8)(0,6)}{0,7} \checkmark$
$\therefore P=2,1 W \checkmark$
6.1.1 the change in frequency (or pitch) of the sound detected by a listener, because the sound source and the listener have different velocities relative to the medium of sound propagation. $\checkmark \checkmark$
6.1.2 $f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \checkmark$

$$
\begin{aligned}
880 \mathrm{P} & =\frac{\mathrm{v}+0}{\mathrm{v}-30} \mathrm{P} 800 \\
\mathrm{~V} & =330 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

6.1.3

6.2 Obeserved colour looks more red - i.e. shifted to the red side of the spectrum,
\therefore.lower frequency,
\therefore star moving away \checkmark from the observer (from doppler effect)
6.3 Doppler Flow meter \checkmark
6.4

$$
\begin{aligned}
f_{L} & =\frac{v \pm v_{L}}{v \pm v_{S}} f_{s} \\
8 \times 10^{9} \checkmark & =\frac{3 \times 10^{8}+0}{3 \times 10^{8}-v_{S}} \checkmark 7,999999 \times 10^{9} \\
V s & =55,55 \ldots=200,00 \mathrm{~km} \cdot \mathrm{~h}^{-1}
\end{aligned}
$$

7.1 The magnitude of the electrostatic force exerted by one charge on another charge is directly proportional to the product of the magnitude of the charges and inversely proportional to the square of the distance between them (their centres).
7.2

Lines perpendicular and not crossing \checkmark Shape
Arrow direction
7.3 $\quad F=\frac{k Q_{1} Q_{2}}{r^{2}}$

$$
\begin{align*}
& =\frac{9 \times 10^{9}\left(5 \times 10^{-9}\right)\left(8 \times 10^{-9}\right)}{\left(2 \times 10^{-2}\right)^{2}} \\
& =9 \times 10^{-4} \mathrm{~N} \tag{4}
\end{align*}
$$

7.4

$$
\begin{align*}
E_{n e t} & =E_{X}-E_{Y} \\
& =\frac{k q_{X}}{r_{X}^{2}}-\frac{k q_{Y}}{r_{Y}^{2}} \quad \checkmark(\text { formula }) \\
& =\frac{9 \times 10^{9} \times 5 \times 10^{-9}}{(0,015)^{2}} \checkmark-\frac{9 \times 10^{9} \times 8 \times 10^{-9}}{(0,035)^{2}} \\
& =141224,49 \text { N. } C^{-1} \text { to the left } \tag{5}
\end{align*}
$$

7.5

$$
\begin{align*}
& E=\frac{F}{q} \\
& 141224,49=\frac{F}{1,6 \times 10^{-19}} \\
& F=2,26 \times 10^{-14} \mathrm{~N} \tag{4}
\end{align*}
$$

8.1.1 Work Function = the minimum energy that an electronü in the metal needs to be emitted from the metal surface \checkmark (the minimum energy needed to knock and electron out of the surface of a metal)
8.1.2 Potassium \checkmark since $W_{0}=h f_{0}$ therefore the higher the threshold frequency the higher \checkmark the work function. Or $W_{0} \alpha f_{0}$
8.1.3 Ammeter will not $\sqrt{ }$ register a current since
$f=\frac{c}{l}=\frac{3 \times 10^{8}}{5.55 \times 10^{-7}} \sqrt{ }=5.41 \times 10^{14}<f_{0}$ for potassium $\sqrt{ }$
OR $\quad f=\frac{c}{l}=\frac{3 \times 10^{8}}{5.5 \times 10^{-7}} \sqrt{ }=5.45 \times 10^{14}<f_{0}$ for potassium $\sqrt{ }$
8.1.4 $E=h f_{0}+E_{k} \checkmark$
$\therefore E_{k}=\frac{h c}{l}-h f_{0} \quad \checkmark$
$=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5.5 \times 10^{-7}} \sqrt{ }-6.63 \times 10^{-34} \times 5.07 \times 10^{14} \checkmark$
$=2.5495 \times 10^{-20}=2.55 \times 10^{-20} \mathrm{~J} \checkmark$

8.1.5 Increase \checkmark

8.2.1 a) threshold frequency $\checkmark=x$ - intercept
b) work function $\checkmark=y$-inercept
8.2.2 $W_{0}=h f_{0} \sqrt{ }=6.63 \times 10^{-34} \times 2 \sqrt{ }=1.326 \times 10^{-33} \mathrm{~J}$

Mistake in the original graph x-axis unit label.
Should have been $\left(\mathbf{x} 10^{14} \mathrm{~Hz}\right)$ Then $W_{0}=1.326 \times 10^{-19} \mathrm{~J}$

