JUNE 2022 GR.12 SCIENCE JUNE P 2 MEMO

1.1	C 🗸 🗸	1.6	B√√
1.2	B√√	1.7	C √ √
1.3	D 🗸 🗸	1.8	D 🗸 🗸
1.4	D 🗸 🗸	1.9	D 🗸 🗸
1.5	C 🗸 🗸	1.10	A 🗸 🗸

2.1	The change in volume (of carbon dioxide) per unit time. $\checkmark\checkmark$ (2 or 0)	(2)

2.2.1 Temperature. ✓

(1)

- 2.2.2 Experiment 1. ✓
 - Experiment 1 takes place at a hotter temperature.
 - ∴ The <u>average kinetic energy / movement of the particles is greater</u> in experiment 1 (than in experiment 2). ✓
 - This results in more effective collisions per unit time in experiment 1. ✓ (3)

2.3.1 40 s.
$$\checkmark$$
 (1)

2.3.3 Average Rate =
$$\frac{19,2-0}{90-0} \sqrt{= 0,21} \, dm^3 \, s^{-1} \, \checkmark$$
 (2)

2.4
$$\checkmark$$
 for (at least one) of $n = \frac{m}{M}$, $c = \frac{n}{V}$ or $n = \frac{V}{V_m}$

$$n_{Na_2CO_3} = \frac{m}{M} = \frac{132,5}{2(23)+1(12)+3(16)} = \frac{132,5}{106} = 1,25 \text{ mol }\checkmark$$

$$n_{HCl} = c.V = (1,25)(1,6) = 2 \ mol \checkmark$$

 \therefore *HCl* is the limiting reactant.

$$n_{CO_2} = \frac{1}{2}(n_{HCl}) = \frac{1}{2}(2) = 1 \text{ mol } \checkmark$$
 +marking for correct ratio

$$V_{CO_2} = n. V_m = (1)(24) = 24 \ dm^3 \checkmark$$
 (5)

2.5.1 Curve B. 🗸

(1)

- 2.5.2 Curve A. 🗸
 - Experiment 2 happens at a <u>lower temperature</u> / has particles with a <u>smaller average kinetic energy</u> (than experiment 1) (which makes the peak of the curve more to the left on the Maxwell-Boltzmann graph).

•	Experiment 2 has a smaller concentration / fewer number of particles	
	(than experiments 3 and 4) (which makes the area underneath the	(3)
	curve smaller on the Maxwell-Boltzmann graph). 🗸	

A <u>dynamic</u> equilibrium when the rate of the forward reaction equals the rate of the reverse reaction. ✓✓ (max 1/2 if "dynamic" is omitted)
 (2)

3.2 TO THE RIGHT. ✓

(1)

When the equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance.
 ✓✓ (2 or 0)

3.4
$$K_c = \frac{[[Co(H_2O)_6]^{2+}].[Cl^-]^4}{[[CoCl_4]_2^-]} \checkmark$$
(1)

(1)

(1)

(3)

- 3.5.3 REVERSE. 🗸
- 3.6 Adding table salt (NaCℓ) increases the chloride ion (Cℓ-) concentration. ✓

3.7 ENDOTHERMIC. ✓

- A <u>decrease in temperature</u> (always) <u>favours the exothermic reaction</u> since it produces heat.
- The <u>reverse reaction was favoured</u> (since the equilibrium shifted towards the reactants (dark blue)).
- The <u>reverse reaction is exothermic</u> which means the forward reaction is endothermic.

3.8 $n_{NH_3} = \frac{m}{M} \sqrt{\frac{4,42}{14+3(1)}} \sqrt{\frac{4}{2}} = 0,26 \ mol \ (at \ equilibrium)$

	N ₂ (g)	3 H ₂ (g)	2 NH ₃ (g)	
n_i (mol)	0,6		0	
$\Delta n \pmod{1}$	-0,13	-0,39	+0,26	✓ all ∆n
n_{eq} (mol)	0,47		0,26	
$c_{eq} = \frac{n}{V}$	<u>0,47</u> 2		<u>0,26</u> 2	✓ conc N2 & NH3
(mol.dm⁻³)	= 0,235		= 0,13	

$$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}] \cdot [H_{2}]^{3}} \checkmark$$

3,864 = $\frac{(0,13)^{2}}{(0,235) \cdot [H_{2}]^{3}}$

 \therefore [*H*₂] = 0,265 ... *mol. dm*⁻³ (at equilibrium) \checkmark

	N2 (g)	3 H ₂ (g)	2 NH₃ (g)	
n_i (mol)	0,6	0,92 🗸	0	
Δn (mol)	-0,13	-0,39	+0,26	✓ all ∆n
n_{eq} (mol)	0,47	0,53 🗸	0,26	
$c_{eq} = \frac{n}{v}$	$\frac{0,47}{2}$	0 265	<u>0,26</u> 2	✓ conc N2 & NH3
(mol.dm ⁻³)	= 0,235	0,200 m	= 0,13	

(9)
$$m_{H_2} = n.M = (0,92)(2) = 1,84 g \text{ (initial)} \checkmark$$

[22]

4.1 $30 - 10 = 20 \text{ cm}^3 \checkmark$

(1)

4.2	Na₂CO₃: n = cV ✓ = 1 x 0,02 ✓ = 0,02 mol	
	H ₂ SO ₄ : $n = 0,02 \text{ mol} \checkmark$	
	c = n/V = 0,02 / 0,04 ✓ = 0,5 mol.dm ⁻³	
	n(H₂SO₄) : n(H₃O⁺) = 1 : 2 ✓ ; [H₃O⁺] = 1 mol.dm⁻³ ✓	
	pH = - log [H₃O⁺] ✓	
	pH = - log (1) = 0 ✓	(8)
4.3 4.4 4.5 4.6 4.7 4.8	acidic Methyl orange Red to yellow / orange strong It fully ionizes in water or It produces a high [H ₃ O ⁺] in H ₂ O. NaOH: $n = cV = 0,1(0,018) \checkmark = 1,8 \times 10^{-3}$ mol CH ₃ COOH: $n = 1,8 \times 10^{-3}$ mol \checkmark	
	c = n / V = 1,8 x 10 ⁻³ / 0,02 ✓ = 0,09 mol.dm ⁻³	
	c (titration) = c (dilution) = 0,09 mol.dm ⁻³ \checkmark	
	n (dilution) = c V = 0,09 (0,1) ✓ = 9 x 10 ⁻³ mol = n (10mℓ sample) ✓	
	c (10mℓ sample) = n / V = 9 x 10 ⁻³ / 0,01 ✓ = 0,9 mol.dm ⁻³	

4.9 $c = 0.9 \text{ mol.dm}^{-3} = 0.09 \text{ mol.}(100 \text{ m}\ell)^{-1} \checkmark$

n = m / M \checkmark 0,09 = m / [2(12) + 4 + 2(16)] \checkmark m = 5,4 g < 5,8 g Not true \checkmark

c(vinegar) = 0,9 mol.dm-3 √

(4)

(8)

5.1	Increase in the oxidation numbers \checkmark \checkmark	(2)	
5.2.1	No reaction ✓	(1)	
5.2.2	Oxidised. ✓	(2)	
0.2.2	Mn → Mn ²⁺ + 2e- \checkmark (double arrow -1)	(-)	
5.3	$NO_3^- + 2H^+ + e^- \rightarrow NO_2(g) + H_2O$	(2)	
	OR		
	$NO_3^- + 4H^+ + 3e^- \rightarrow NO(g) + 2H_2O \checkmark \checkmark$		
5.4.1	Hydrogen (gas) ✓	(1)	
5.4.2	$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^- \checkmark \checkmark$	(2)	
5.4.3	It uses <u>electricity</u> that is generated by burning <u>coal</u> \checkmark , which <u>releases CO₂</u> , a greenhouse gas which contributes to <u>global</u> <u>warming</u> \checkmark	(2)	
6.1	Voltaic/galvanic ✓		(1)
6.2	A porous membrane stopper \checkmark (cotton wool plugs) to stop the Na ₂ SO ₄ from running out \checkmark .	₁ (aq)	(2)
6.3	Keep charges neutral in the solutions/beakers.		(1)
	Completes circuit		()
	Pathway for ions. ✓ (any one)		
6.4.1	Magnesium√		(1)
6.4.2	$Ma \rightarrow Ma^{2+} + 2e \cdot \checkmark$		(1)
6.4.3	NiSO ₄ (or any Ni (ag) salt) \checkmark		(1)
644	$E^{\theta} = E^{\theta}$ $E^{\theta} = 0.27 - (-2.36) \sqrt{-2.09} \sqrt{-2}$		(3)
0.4.4	$L_{cell} - L_{cathode} - L_{anode} - 0,27 - (2,00) - 2,00 - 2$		(0)
6.5.1	Zn / Zn ²⁺ \checkmark // \checkmark H ₂ / H ⁺ / Pt \checkmark		(3)
6.5.2	Increases 🗸		(1)
6.5.3	Zn is stronger reducing agent than H ₂ , \checkmark		
	\therefore Zn will be oxidised to Zn^{2+} and H^+ will be reduced to H_2 \checkmark		(3)
	∴ [H ⁺] decreases \checkmark , ∴ pH will increase		
6.5.4	cathode 🗸		(1)

7.1.1	AC 🗸	(1)
7.1.2	$\sqrt[v]{1}$ $\sqrt[v]{1}$ $\sqrt[v]{1}$ (-1 for wrong labels, sin/cos graph right)	(2)
7.1.3	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	(4)
7.2.1	Electrical to mechanical \checkmark	(1)
7.2.2	Motor effect 🗸	(1)
7.2.3	Electromagnetic induction \checkmark	(1)
7.3.1	motor 🗸	(1)
7.3.2	Sliding contact between moving and stationary parts for current to flow \checkmark	(1)
7.3.3	ANTI-CLOCKWISE 🗸	(1)
7.3.4	More windings on coil Stronger magnets	
	Larger current ✓ (any one)	(1)
		[14]

8.1.1
gradient/m =
$$\frac{\Delta V}{\Delta I}$$

= $\frac{0,65 - 1,5^{\checkmark}}{1,0 - 0^{\checkmark}}$
= - 0,85 Ω^{\checkmark} (3)

- 8.1.2 Internal resistance \checkmark in ohms (or Ω) \checkmark (2)
- 8.1.3 1,5 V ✓
- 8.1.4 Decreases \checkmark When I increases "Lost volts"/ Ir increases \checkmark $V_{ext} = \underline{emf - Ir \ decreases} \checkmark$
- 8.2.1 $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \checkmark \qquad \text{OR} \quad R_{p} = \frac{R1 \times R2}{R1 + R2}$ $= \frac{1}{60} + \frac{1}{60} \checkmark$ $\therefore R_{p} = 30 \ \Omega \checkmark$

8.2.2	OPTION 1 / OPSIE 1	OPTION 2 / OPSIE 2:	(4)
	R _{ext} = 30 + 25 = 55 Ω √	$R_{tot} = (30 + 25) \checkmark +1,5 = 56,5 \Omega$	
	Emf/ <i>emk</i> = I(R + r) √	V = IR√	
	∴ 12 ✓ = I(55 + 1,5) ✓	$12\sqrt{1} = I(56,5)\sqrt{1}$	
	∴ I = 0,21 A ✓	∴ I = 0,21 A ✓	

8.2.3	OPTION 1/OPSIE 1	OPTION 2/OPSIE 2	(3)
	$V = IR \checkmark$	$V = IR \checkmark$	
	= (0,21)(30) ✓	= (0,105)(60) ✓	
	= 6,3 V 🗸	= 6,3 V 🗸	

[20]

(1)

(3)

(3)