

SOUTH AFRICAN COMPREHENSIVE ASSESSMENT INSTITUTE

PHYSICAL SCIENCES

2021

GRADE 12 PRELIMINARY EXAMINATION

PAPER 2

MEMORANDUM

TOTAL: 150

TIME: 3 hours

This memorandum consists of 13 pages.

PAPER 2

TOTAL: 150

TIME: 3 HOURS

INSTRUCTIONS AND INFORMATION

- 1. Marks will be awarded for: correct formula, correct substitution, and correct answer with unit.
- 2. No marks will be awarded if an incorrect or inappropriate formula is used, even though there may be relevant symbols and applicable substitutions.
- 3. When an error is made during substitution into a correct formula, a mark will be awarded for the correct formula and for the correct substitutions, but no further marks will be given
- 4. If no formula is given, but all substitutions are correct, the candidate will forfeit one mark.
- 5. Marks are only awarded for a formula if a calculation has been attempted, i.e. substitutions have been made or a numerical answer given.
- 6. Final answers to all calculations, when not specified in the question, must be rounded off to a minimum of TWO decimal places.
- 7. If a final answer to a calculation is correct, full marks will not automatically be awarded. Markers will always ensure that the correct/appropriate formula is used and that workings, including substitutions, are correct.
- 8. Candidates will only be penalised once for the repeated use of an incorrect unit within a question.
- 9. Units are only required in the final answer to a calculation.
- 10. Marks are only awarded for an answer, and not for a unit per se.
- 11. SI units must be used.
- 12. If one answer or calculation is required, but two are given by the candidate, only the first one will be marked, irrespective of which one is correct.
- 13. When a chemical FORMULA is asked, and the NAME is given as answer, the candidate forfeits the marks. The same rule applies when the NAME is asked and the FORMULA is given.
- 14. When half-reactions are to be written, the correct arrow should be used.
- 15. In the structural formula of an organic molecule all hydrogen atoms must be shown. Marks will be deducted if hydrogen atoms are omitted.
- 16. When a structural formula is required, marks will be deducted if the learner writes the condensed formula.
- 17. When an IUPAC name is asked and the candidate omits the hyphen(s), marks will be forfeited.
- 18. When a chemical reaction is asked, marks are awarded for correct reactants, correct products and correct balancing If only a reactant(s) or only a product(s) is/are written, without an arrow, no marks are awarded for the reactant(s) or product(s).
- 19. Positive marking will be indicated where relevant.

1.1	С	$\checkmark\checkmark$	(2)
1.2	D	$\checkmark\checkmark$	(2)
1.3	А	$\checkmark \checkmark$	(2)
1.4	С	$\checkmark \checkmark$	(2)
1.5	В	$\checkmark \checkmark$	(2)
1.6	В	$\checkmark \checkmark$	(2)
1.7	С	$\checkmark \checkmark$	(2)
1.8	А	$\checkmark \checkmark$	(2)
1.9	В	$\checkmark \checkmark$	(2)
1.10	В	$\checkmark\checkmark$	(2) [20]

QUESTION 2	
2.1 2.1.1 E ✓	(1)
2.1.2 A ✓	(1)
2.1.3 B ✓	(1)
 ✓ 2.2 3-methylbut-1-en ✓ 	(2)
✓ Balancing	
2.3 $2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$ \checkmark Reactants \checkmark Products	(3)
2.4 2.4.1 Esterification ✓	(1)
2.4.2 H₂SO₄ ✓ ✓ Functional group	(1)
2.4.3 H H O H H H H H - C - C - O - C - C - C - C - H H - C - C - C - C - C - H	
нн нннн	(2)
2.4.4 Ethyl pentanoate ✓✓	(2) [14]

- 3.1 The temperature at which the vapour pressure of a substance equals atmospheric pressure. $\checkmark \checkmark$ (2)
- 3.2 Compound E (pentane) is an alkane and has weak Van der Waals forces between its molecules while compound F (pentanol) is an alcohol and has strong hydrogen bonds between its molecules. ✓
 <u>More energy is required</u> to overcome the stronger intermolecular forces between compound F (pentanol) and consequently the boiling point of F is <u>higher</u> ✓ than that of compound E which <u>requires less energy</u> to overcome its weaker intermolecular forces. ✓
- A ✓ ✓
 Compound A has the lowest boiling point (-42 °C) and vapour pressure is inversely proportional to boiling point, which means the compound with the lowest boiling point, has the highest vapour pressure. ✓ (3)
- 3.4 3.4.1 Higher than ✓ (1)
 - 3.4.2 Compound **D**, Butanol, consists of a carbon chain with 4 carbon molecules, while compound **B**, Propanol, consists of a carbon chain with 3 carbon molecules. Because compound **D** has a <u>longer carbon chain</u> (and consequently a larger molecular mass) \checkmark than compound **B**, <u>more energy</u> is required to overcome the intermolecular forces in compound **D**. A Because of this, the boiling point of compound **D** will be higher than the boiling point of compound **B**. \checkmark (3)

[12]

4.1 4.1.1 Dehydration ✓ (1) 4.1.2 Sulphuric acid (H₂SO₄) / Phosphoric acid (H₃PO₄) ✓ (1)4.1.3 Water (H₂O) ✓ (1) 4.1.4 Н Н H - C - C = C H H(2) н 4.1.5 Propene ✓ (1) 4.2 4.2.1 Hydro halogenation ✓ (1) 4.2.2 H Cł H $\mathsf{H} - \overset{|}{\underset{|}{\mathsf{C}}} - \overset{|}{\underset{|}{\mathsf{C}}} - \overset{|}{\underset{|}{\mathsf{C}}} - \overset{|}{\underset{|}{\mathsf{C}}} - \mathsf{H} \quad \checkmark$ (2) н н н 4.2.3 2-chloropropane ✓ (2)(1) 4.3.1 Substitution / hydrolysis ✓ 4.3 4.3.2 Diluted, strong base like NaOH (aq) / KOH (aq) dissolved in ethanol ✓ Mild heat ✓ (2) [14]

- 5.1 Reaction rate is the change in concentration of reactants or products per unit time. √√ (2)
 5.2 5.2.1 How will different reaction conditions (change in the vinegar's temperature) influence the reaction rate of this reaction? √√ (2)
 5.2.2 Temperature of the vinegar √ (1)
 5.2.3 Reaction rate √ (1)
 5.3 5.3.1 B √ (1)
 - 5.3.2 a **Higher temperature** (as seen in experiment II) <u>increases</u> the average <u>kinetic</u> <u>energy</u> of the particles. Particles will move faster and <u>more effective collisions</u> between particles will <u>increase the reaction rate</u>. CO₂ yield will increase in a shorter period of time (as seen in graph A).

A **Lower temperature** (as seen in experiment II) <u>decreases</u> the average <u>kinetic energy</u> of the particles. Particles will move slower and <u>less effective</u> <u>collisions</u> between particles will <u>lower the reaction rate</u>. CO₂ yield will increase over a longer period (as seen in graph B).

Mark allocation			
Average kinetic energy increases / decreases	\checkmark		
More / less effective collisions between particles	\checkmark		
Reaction rate increase / decrease (seen in CO ₂ yield)	✓		
	(3)		

5.4 Higher than ✓

5.5

For CH_3COOH:Ratio CH_3COOH : NaHCO3n = cV $1: 1 \checkmark$ $n = (2,5)(0.02) \checkmark$ Amount of moles NaHCO3: n = 0,05 molesn = 0,05 molesFor NaHCO3: $n = \frac{m}{M}$ $0,05 = \frac{m}{84} \checkmark$ m = 4,2 g

Excess = original mass in flask – mass that reacted with CH₃COOH = $10 \text{ g} - 4.2 \text{ g} \checkmark$ = 5.8 g \checkmark

(5) [**16**]

(1)

6.1 When the equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance. $\checkmark\checkmark$ (2)

6.2 Endothermic ✓

(1)

- 6.3 6.3.1 Stay the same ✓ (1)
 - 6.3.2 Decrease ✓ (1)
 - 6.3.3 The forward reaction is an endothermic reaction. A <u>decrease in temperature</u> will be <u>opposed</u> ✓ by <u>favouring the exothermic reaction</u>, ✓ which in this case, is the <u>reverse reaction</u>. Because the reverse reaction is favoured now, the amount of moles CO (g) will decrease.✓ (3)

6.4

Time

Marking of reaction rate graph		
Axis labelled correctly (reaction rate / time)	\checkmark	
Correct shape of graph	\checkmark	
Correct labels on graph (reaction could be written out as well)	\checkmark	

(3)

6.5

	H ₂	CO ₂	H ₂ O	CO	7
Ratio	1	1	1	1	_ √
Initial amount (moles)	0,8	0,8	0	0	
Change in amount (moles)	0,55	0,55	0,55	0,55	_ √
Equilibrium amount (moles)	0,25	0,25	0,55	0,55	
Equilibrium concentration (mol.dm ⁻³)	0,05	0,05	0,11	0,11	•

$$K_c = \frac{[H_2 O][CO]}{[H_2][CO_2]} \checkmark$$

$$K_c = \frac{(0,11)(0,11)}{(0,05)(0,05)} \quad \checkmark$$

$$K_c = 4,84$$
 \checkmark

Marking guidelines			
Ratio	\checkmark		
Correct change in amount of moles	\checkmark		
Divide by 5 dm ⁻³ to calculate equilibrium concentration			
Correct equilibrium concentration calculated			
K _c equation correct	\checkmark		
Correct substitution into K _c equation			
Correct answer			
	(7)		

(7)

[18]

(2)

(1)

(1)

QUESTION 7

- ✓ Reactants
 ✓ Products
- 7.1 $2HC\ell + Na_2CO_3 \longrightarrow 2NaC\ell + H_2O + CO_2 \checkmark Balancing$ (3)
- 7.2 a Strong acid \checkmark because HCl will ionise completely in water to form a high concentration of H₃O⁺ ions. \checkmark
- 7.3 An ampholyte is a substance that can act as either acid or base \checkmark e.g. H₂O \checkmark (2)

Note: The example MUST be H_2O (water) because the example must come from the balanced equation in question 7.1.

- 7.4 The hydrochloric acid solution / HCℓ (aq) ✓
- 7.5 Methyl orange ✓

7.7
$$pH = -log[H_3O^+] \checkmark$$

 $pH = -log[0,4] \checkmark$
 $pH = 0,397] \checkmark$
 $\approx 0,4$ (3)

[19]

8.1 Galvanic cell ✓

Because a current is generated through spontaneous chemical reactions, no external source of electric energy is needed. \checkmark (2)

8.2 $E^{\theta} cell = E^{\theta} reduction - E^{\theta} oxidation \checkmark$

 $(+1,10) = E^{\theta} reduction - (-0,76) \checkmark$

 $E^{\theta} reduction = +0.34 V \checkmark$

X is a Cu electrode. \checkmark

(4)

8.3 **P** is the salt bridge \checkmark

⁄

The function of the salt bridge is to complete the circuit (to enable current flow) / maintain electrical neutrality of the electrolyte solutions. \checkmark (2)

- 8.4 Reducing agent \checkmark (1)
- 8.5 $Cu^{2+} + 2e^{-} \longrightarrow Cu \checkmark$ (2)
- 8.6 An electrolyte is a solution/liquid/dissolved substance that conducts electricity through the movement of ions. ✓✓ (2)
 [13]

9.1 Electrolysis is the chemical process in which electrical energy is converted to chemical energy. $\checkmark\checkmark$

OR

Electrolysis is the use of electrical energy to produce a chemical change. \checkmark (2)

- 9.2 9.2.1 A ✓ (1)
 - 9.2.2 Chlorine gas \checkmark (1)
- ✓ Reactants ✓ Products 9.3 $2C\ell^{-} + 2H_2O \longrightarrow C\ell_2 + H_2 + OH^{-}$ ✓

Also accept if candidate wrote the following net reaction:

$$2NaCl (aq) + H_2O (l) \longrightarrow Cl_2 (g) + 2NaOH (aq) + H_2 (g)$$
 (3)

- 9.4 Part C, the membrane, is <u>selectively permeable</u>. ✓ (1)
- 9.5 Chlorine gas is poisonous for humans and animals when inhaled ✓ because of this, plants are not built close to residential areas. ✓ (2)

[10]

 \checkmark

10.1 10.1.1 Haber process ✓ (1)

$$10.1.2 \text{ N}_2 + 3\text{H}_2 \longrightarrow 2\text{NH}_3 \checkmark$$
 (2)

10.2 10.2.1 Ostwald process ✓ (1)

$$10.2.2 \text{ 3NO}_2 + \text{H}_2\text{O} \longrightarrow 2\text{HNO}_3 + \text{NO} \checkmark$$
(2)

- 10.3 10.3.1 NH₃ \checkmark (has to be molecular formula) (1)
 - 10.3.2 HNO₃ \checkmark (has to be molecular formula) (1)
- 10.4 Ammonium nitrate \checkmark (has to be the name) (1)
- 10.5 The farmer should use fertiliser B ✓ because fertiliser B contains the <u>largest</u> amount of nitrogen (N) ✓ and nitrogen promotes leaf grow which will help the farmer to produce a good yield of spinach. ✓ (3)
- 10.6 Eutrophication is the process by which an ecosystem, e.g. a river or dam, becomes enriched with inorganic plant nutrients, especially phosphorus and nitrogen, resulting in excessive plant growth. ✓ As plant growth becomes excessive, the amount of dead and decaying plant material increases rapidly. ✓ (2)

[14]

GRAND TOTAL: [150]