Memo 10 June 2019 PE

1.1 B
1.2 C
1.3 A
1.4 C
1.5 B
1.6 D
1.7 D
1.8 B
1.9 D
1.10 B
2.1 Wave length is the shortest distance between two consecutive points in phase. SEE P104
2.2.1 Destructive interference
2.2.2 at X amplitude -1 cm

2.2.3 pulses continue to travel in original direction

\therefore dist $=$ vel x time r
Cliff LHS there and back: dist $=3 \times 340=1020 \mathrm{~m} \checkmark \quad \therefore 1$ way only $510 \mathrm{~m} \checkmark$
Cliff RHS there and back dist $=5 \times 340=1700 \mathrm{~m} \quad \therefore 1$ way only $850 \checkmark \checkmark \therefore$ dist between $=1360 \mathrm{~m} \checkmark$
3.1 Oscillating magnetic field \checkmark induces \checkmark an oscillating electric field at right angles \checkmark to itself. These fields are mutually inductive.
3.2 infrared, visible, x - ray, gamma ray $\checkmark \checkmark$ (-1 if reverse order)
3.3 Light travels as a wave \checkmark but interacts / imparts its energy as quanta / photons \checkmark which are particle like packages of energy.
3.4.1 $c=f \lambda \therefore f=c / \lambda \checkmark=3 \times 10^{8} / 2.5 \times 10^{-7} \checkmark=1.2 \times 10^{15} \mathrm{~Hz} \checkmark$
3.4.2 E=hf $\checkmark=6,626 \times 10^{-34} \times 1,2 \times 10^{15} \checkmark=7,95 \times 10^{-19} \mathrm{~J} \checkmark$
3.5 UV Ultra violet \checkmark
4.1.1 $Q_{\text {final }}=\left(Q_{R}+Q_{s}\right) / 2=(3-5) / 2=-1 n C$
4.1.2 $n=Q / q_{\mathrm{e}} \checkmark=3 \times 10^{-9} / 1,67 \times 10^{-19} \checkmark=1,875 \times 10^{-10} \checkmark$
4.2

induced polarization \checkmark in polystyrene ball. Attraction more than repulsion

transfer of electrons \checkmark from polystyrene ball to vdG G. Thus ball positive

positive charges repel

4.3 Electroscope \checkmark

4.4.1 The droplets of paint are electrostatically charged and thus repel \checkmark each other forming the fine mist.
4.4.2 By having the car oppositely charged means the paint is attracted \checkmark to the car.
(1)

5.1.1 Domains

5.1.2 B
5.1.3 All arrows in the same direction. Nett resultant spin direction

6.1 Answers on Answer page

Voltage vs current

6.2 Dependent = voltage \checkmark

Independent = current \checkmark
6.3 Voltage is directly \checkmark proportional to the current \checkmark
7.1.1 Potl Diff = energy per charge \checkmark difference between two points in a circuit \checkmark
7.1.2 Current is the rate of flow \checkmark of charge \checkmark

Q 7.1.3	Ammeter	Voltmeter
a) What it measures	Current strength \checkmark	Potential difference or voltage \checkmark
b) It's resistance	very low \checkmark	Very high \checkmark
c) How it's connected	In series \checkmark	In parallel \checkmark

7.2.1 $6 \mathrm{~V} \checkmark$
7.2.2 $\frac{1}{R_{p}}=\frac{1}{R 1}+\frac{1}{R 2}=\frac{1}{2}+\frac{1}{6}=\frac{3+1}{6}=\frac{4}{6} \quad \therefore R_{p}=\frac{6}{4}=1,5 \Omega$
7.2.3 $R_{T}=1+1,5=2,5 \Omega \checkmark$
7.2.4 $\quad I=\frac{V}{R}=\frac{6}{2,5}=2,4 A \checkmark \checkmark \checkmark$
7.2.5 $V=\operatorname{IR}=2,4 \times 1,5=6,6 \mathrm{~V} \checkmark \checkmark \checkmark$
7.2.6 a) DEACREASES \checkmark
b) the total resistance increases \checkmark (to 7Ω) thus causing the current to decrease \checkmark.

