1

ALEXANDER ROAD HIGH SCHOOL

PHYSICAL SCIENCE JUNE EXAM PAPER 2

TOTAL = 100

GRADE 10

Instructions

JUNE 2019

- The question paper consists of 7 questions.
- Answer all the questions.
- Answer Section A on the answer sheet provided.
- Answer Section B on the folio paper provided.
- Rule off after each question in Section B.
- A non-programmable calculator may be used.
- Number the answers correctly according to the numbering system.
- Round off to two (2) decimal places where necessary.
- A periodic table has been included on the back of the answer sheet.

SECTION A

QUESTION 1: Multiple choice (answer on the answer sheet)

Four possible options are provided as answers to the following questions. Each question has only 1 correct answer. Choose the correct answer and write the letter (A - D) next to the relevant question number (1.1 - 1.10) on the answer sheet.

- 1.1 Which ONE of the following substances is non-magnetic?
 - A. Iron nail
 - B. Steel pot
 - C. Copper wire
 - D. Chromium-nickel alloy

JA

2 HOURS

- 1.2 Which ONE of the following substances can be classified as a heterogeneous mixture?
 - A. Mud
 - B. Brass
 - C. Tea
 - D. Air
- 1.3 The process in which a solid becomes a gas without passing through the intermediate liquid phase is called...
 - A. deposition
 - B. boiling
 - C. evaporation
 - D. sublimation
- 1.4 In Bohr's atomic model, the maximum number of electrons which can be accommodated in the second energy level is...
 - A. 2
 - B. 6
 - C. 8
 - D. 18
- 1.5 Consider C, N, P and Na. The atomic size in ASCENDING (i.e. increasing) order is...
 - A. C, N, P, Na
 - B. Na, C, N, P
 - C. N, C, P, Na
 - D. N, C, Na, P
- 1.6 Which allotrope of carbon does the image below show?
 - A. Diamond
 - B. Graphite
 - C. Buckminsterfullerene
 - D. Carbon nanotube

- 1.7 Water molecules separate when water evaporates to form water vapour. Which ONE of the following explanations best describes this process?
 - A. This is an example of a physical change.
 - B. This is an example of a chemical change.
 - C. A new chemical substance is being formed.
 - D. Energy is being released into the atmosphere.
- 1.8 Hydrogen peroxide (H₂O₂) decomposes in the presence of MnO₂ to form water and oxygen gas. The reaction vessel gets warmer. Which ONE of the following combinations is correct?

Α	Decomposition reaction	Exothermic reaction	MnO ₂ acts as a catalyst
В	Decomposition reaction	Endothermic reaction	MnO ₂ acts as a catalyst
С	Synthesis reaction	Exothermic reaction	MnO ₂ acts as a catalyst
D	Synthesis reaction	Endothermic reaction	MnO ₂ is a reactant

- 1.9 In which ONE of the following compounds do BOTH ions have the same electron configuration as argon?
 - A. Beryllium chloride
 - B. Sodium chloride
 - C. Potassium chloride
 - D. Potassium bromide

1.10 The relative molecular mass of (NH₄)₃PO₄ is...

- A. 113
- B. 141
- C. 144
- D. 149

[2 x 10 = 20]

SECTION B

Answer on folio sheets -

QUESTION 2:

A group of scientists take a pure, unknown substance X and heat it using a Bunsen burner. The scientists record the temperature of substance X every 30 seconds. Using their data, they plot the following graph.

Heating Curve of Substance X

2.1	What is a <i>pure substance</i> ?	(2)
2.2	Give one term for the process taking place between:	
	2.2.1 BC	(1)
	2.2.2 DE	(1)
2.3	Explain the difference between temperature and heat.	(2)

2.4 Use the kinetic molecular theory (KMT) to explain why the temperature of substance X remains the same from D to E despite the scientists heating the substance with a Bunsen burner. (1)

2.5	Define the term <i>boiling point</i> .	(2)

2.6 What is the boiling point of substance X? (1) 2.7 A group of experimenters from the South African Bureau of Standards (SABS) determine the boiling points of a number of different substances under a standard set of conditions. The results are shown in the table below.

Substance	Boiling Point (°C)
Bromine	59
Water	100
Mercury	184
Ethylene glycol	198
Naphthalene	218
Sodium	883

(1)

2.8 How does the altitude at which the scientists performed their experiment for substance X compare to the altitude at which the SABS experimenters performed their experiment? Write down HIGHER THAN, LOWER THAN or EQUAL TO and then **explain** your answer. (4)

Which of the substances from the table above is most likely substance X?

[15]

QUESTION 3:

3.1 Complete the table below. Write only the answer next to the question number (3.1.1-3.1.6) on your answer sheet. (6)

Element /	Atomic	Mass	Number of	Number of	Number of
lon	Number	Number	Protons	Neutrons	Electrons
(3.1.1)	19	39	19	(3.1.2)	19
(3.1.3)	30	(3.1.4)	30	35	30
Sulphide	16	32	(3.1.5)	16	(3.1.6)

3.1	Consid	Consider a magnesium atom.			
	3.2.1	Draw the Aufbau diagram for magnesium.	(2)		
	3.2.2	How many valence electrons does magnesium have?	(1)		
	3.2.3	Magnesium is found in group II on the periodic table.			
		What is the name of this group?	(1)		
3.3	Consid	ler a fluorine atom.			
	3.3.1	Give the full <i>sp</i> -notation for fluorine.	(2)		
	3.3.2	Which element has the same electron configuration as the fluoride ion?	(1)		
	3.3.3	Fluorine is found in group VII on the periodic table.			
		What is the name of this group?	(1)		

- 3.4 Magnesium and fluorine react to form magnesium fluoride.
 - 3.4.1 Give the chemical formula of magnesium fluoride.
 - 3.4.2 What type of bonding exists in the magnesium fluoride?
 - 3.4.3 Use Lewis diagrams to show the formation of the magnesium fluoride molecule. (3)

[20]

(2)

(1)

QUESTION 4:

Copper (*Cu*) has two stable isotopes: ${}^{63}_{29}Cu$ and ${}^{65}_{29}Cu$. The average atomic mass of copper, as recorded on the periodic table, is 63,5.

4.1	Define the term <i>isotope</i> .	(2)
4.2	Give the number of protons and neutrons for each isotope.	(2)
4.3	Calculate the percentage of each isotope.	(4)
		[8]

QUESTION 5:

5.1	Define the term first ionisation energy.	(1)
5.2	How does the first ionisation energy of sodium (Na) compare to the first ionisation en- subbur (S)? Write down GREATER THAN, LESS THAN or EQUAL TO and then exp	ərgy of lain vour
	answer. In your explanation you must refer to atomic size.	(3)

[4]	

QUESTION 6:

6.1	Define the term <i>chemical bond</i> .	(2)
6.2	Which type of bonding exists in each of the following compounds?	
	6.2.2 NH ₃	
	6.2.3 ZnCl ₂	(3 x 1 = 3)
6.3	Consider the following two covalently-bonded compounds N ₂ and H ₂ O.	
	6.3.1 Define the term <i>covalent bond</i> .	(2)
	6.3.2 Classify the type of covalent bonding in <u>each</u> of the compounds.	(2)
	6.3.3 Draw the Lewis diagram for N ₂ .	(2)
	6.3.4 How many bonds exist between the nitrogen atoms in N ₂ ?	(1)
	6.3.5 Represent H ₂ O using Couper notation.	(2)

6.4 Consider Cu(s) and KCl(s). Use the relevant bonding models to explain why:			
	6.4.1	Cu(s) is a good conductor of electricity but KCl(s) is an electrical insulator.	(3)
	6.4.2	Cu(s) is malleable but KCI(s) is not. Your answer should include an explanation	ation
		of the term "malleable".	(3)
			[20]
QUES	TION	<u>7:</u>	
7.1	Write	the chemical formulae for:	
	7.1.1	Iron (II) oxide.	
	7.2.2	Magnesium hydroxide.	
	7.2.3	Potassium sulphate.	
	7.2.4	Silver sulphite.	
	7.2.5	Ammonium nitrate.	(5 x 2 = 10)
7.2	Consi	der the molecule AlN_3 .	
	7.2.1	What is the chemical name of AlN_3 ?	(1)
	7.2.2	Calculate the relative formula mass of AlN_3 .	(2)
			[13]

Total: [100]