
GR 11 Physical Sciences Paper 2 June 2019 MEMO

1.1 1.2 1.3 1.4 1.5 1.6 1.7	D B A D D B B	
1.8 1.9	B B	
1.10	A	
2.1	The minimum amount of energy needed to start a reaction. \checkmark	(1)
2.2	65 kJ ✓	(1)
2.3	185 Kj ✓	
2.4	$\Delta H = E(products) - E(reactants) \checkmark$	
	= -30 - 90 = -120 kJ \checkmark	(2)
2.5	EXOTHERMIC. The product's energy is lower that the reactant's energy \checkmark	\checkmark
	OR More energy is relaeased that absorbed.✓✓	(2)
2.6	✓ endo graph ✓ dotted line	

Reaction coordinate - time

Energy kJ

5.1 Bond order increases \checkmark , Multiple bonds <u>need more energy</u> \checkmark to be broken.

5.2 S is a bigger atom \checkmark – weaker bond \checkmark Energy released = 2 x 707 = 1414 KJ.mol-1 5.3 Covalent 5.4 orbitals between Overlapping filled 5.5 non-meta 44 energy energy out 5.6 = in 2(498) - (1414 + 4×463) 4 2 4135 + = -618 AH <0, . exothermic 5.7 Bond length Both bables Atomic distance Stape ond energy 5.8: Ar is noble gas, has full orbitals, no Filled orbitals possible ' overlapping of strong forces

0::0 6.1 O = Chydronium loxonium 6.2.1 6.2.2 : dative covalent bond -6.2.3 empty orbital, lone pair on other molecule 6.3.1 Allinear B: trigonal planar C: tetrahedral 6.3.2 BC13 (BF3) no lone pairs on the central atom (according to USEPR) USEPR L 6.3.4 7.1 $p_1 V_1 = p_2 V_2$ (20)(V) = $p_2 (V+2)$ 20V = P2. 7.2.1 Charle's law 7.2.2 The volume of an enclosed gas is directly prop. to <u>absolute</u> Temperature at constant pressure. 7.2.3 PV = nRT $(101,3\times10^3)(50\times10^{-3}) = n(8,31)(373)$ h = 1.53 mol. Straight through origin. 7.2.4 Less aves with lables 7.2.5 _V T(K)