

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2015

PHYSICAL SCIENCES P2

MARKS: 150

TIME: 3 hours

This question paper consists of 19 pages.

INSTRUCTIONS AND INFORMATION

- 1. Write your examination number and centre number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line open between two subsections, e.g. between QUESTIONS 2.1 and QUESTION 2.2.
- 6. Give brief motivations, discussions, etc. where required.
- 7. You may use a non-programmable calculator.
- 8. You may use appropriate mathematical instruments.
- 9. You are advised to use the attached DATA SHEETS.
- 10. Show ALL formulae and substitutions in ALL calculations.
- 11. Round off your final numerical answers to a minimum of TWO decimal places.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four possible options are provided as answers to the following questions. Each question has only ONE correct answer. Write only the correct letter (A–D) next to the question number (1.1–1.10) in the ANSWER BOOK, for e.g. 1.11 D.

- 1.1 A family of carbon compounds in which one member differs with a -CH₂group from the next member of the family, is known as ...
 - A isomers.
 - B a homologous series.
 - C a hydrocarbon series.
 - D unsaturated compounds.
- 1.2 The group of atoms that determine the physical and chemical properties of ketones is a ...
 - A carboxyl group.
 - B formyl group.
 - C carbonyl group.
 - D hydroxyl group.
- 1.3 In which ONE of the following options are the three compounds arranged in order of increasing (lowest to highest) boiling points?

А	CH ₃ CH ₂ COOH	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ CH ₂ OH	
В	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ COOH	
С	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ COOH	
D	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ COOH	CH ₃ CH ₂ CH ₂ CH ₂ OH	(2)

1.4 The potential energy diagram below refers to the following hypothetical reaction taking place in a closed container: $X_2 + Y_2 \rightleftharpoons 2XY$

What is the heat of reaction, in kJ·mol⁻¹, for the reverse reaction that is $2XY \rightarrow X_2+Y_2$?

А	+ 30
В	+ 10
С	- 10
D	- 40

(2)

(2)

(2)

1.5 Consider the following reaction:

 $CH_3NH_2(aq) + H_2O(\ell) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$

The CH_3NH_2 acts as a/an ...

- A proton donor.
- B proton acceptor.
- C oxidising agent.
- D reducing agent.

(2)

1.6 A solution of ethanoic acid (acetic acid) is titrated against a standard sodium hydroxide solution. Which ONE of the following indicators would be the most suitable for this titration?

	Indicator	pH range of the indicator	
А	Phenolphthalein	8,3–10	
В	Methyl orange	3,1–4,4	
С	Bromothymol blue	6,0–7,6	
D	Universal indicator	Changes colour over a wide range of pH values	(2

1.7 A few drops of concentrated sulphuric acid are gradually added to 1 dm³ of water at 25 °C.

Which ONE of the following graphs illustrates the relationship between $[H^+]$ and $[OH^-]$ as the acid is added to the water?

1.8 Which ONE of the following correctly gives the direction, as well as the medium, in which electrons move in a galvanic cell?

	DIRECTION	MEDIUM	
А	cathode to anode	salt bridge	
В	anode to cathode	external wire	
С	cathode to anode	external wire	
D	anode to cathode	salt bridge	(2

<u>4</u>

- A Ostwald process.
- B contact process.
- C catalytic oxidation of ammonia.
- D fractional distillation of air.
- 1.10 Phosphorous rich fertilisers:
 - A Are essential for growing plants with strong stems and healthy, green leaves.
 - B Improves the quality of fruit and flowers and makes plants frost and disease resistant.
 - C Are produced in the industry by the Ostwald process.
 - D Are fertilisers that are used to stimulate root growth in plants.

(2) [**20**]

(2)

QUESTION 2 (Start on a new page.)

Consider the organic compounds represented by the letters **A** to **I** in the table below.

A	Butane	F	$CH_3 - C = CH - CH_3$ $ $ CH_3
В	О ॥ СН ₃ -СН ₂ -С-ОН	G	2-methylpropane
С	CHC ₄ 3	Н	CH≡CH
D	Butan-2-ol	I	H H O H-C-C-O-C-H H H
Е	Butan-1-ol		

2.1 Write down the letter(s) that represent(s) the following:

2.1.1	Two compounds that are CHAIN ISOMERS	(1)
2.1.2	A PRIMARY ALCOHOL	(1)
2.1.3	A weak, MONOPROTIC ACID	(1)
Write c	lown:	
2.2.1	The IUPAC name of compound F	(2)
2.2.2	The NAME of the homologous series to which compound ${f C}$ belongs	(1)
2.2.3	A balanced equation for the complete combustion of compound H using MOLECULAR FORMULAE	(3)

2.2

2.4

2.3 Compound I is the product of an esterification reaction.

For Compound I, write down the:

2.3.1	IUPAC name	(2)
2.3.2	STRUCTURAL FORMULA of the alcohol from which it is synthesised	(2)
2.3.3	IUPAC name of the carboxylic acid from which it is synthesised	(1)
"Propar	noic acid is a functional isomer of compound I."	
Explain In your both isc	this statement fully. explanation, give the molecular formulae and structural formulae of omers and indicate any differences and similarities.	(4) [18]

(3)

QUESTION 3 (Start on a new page.)

3.1 Petroleum companies use an elimination reaction to break longer hydrocarbons into shorter, more useable hydrocarbons.An example of such a reaction is given:

$$\begin{array}{rcl} & & \text{Heat/catalyst} \\ C_{10}H_{22} & \rightarrow & C_8H_{18} \mbox{ + } X \end{array}$$

3.1.1 Name the TYPE of elimination reaction referred to above. (1)

Molecules of compound **X** can bond to each other to form a polymer.

- 3.1.2 What is this TYPE of POLYMERISATION called? (1)
- 3.1.3 Using STRUCTURAL FORMULAE, write down a balanced equation for this polymerisation reaction.
- 3.2 The flow diagram below shows some organic reactions.

3.2.1	Write down the STRUCTURAL FORMULA of compound Y formed in reaction 1 .	(2)
3.2.2	Name the TYPE of reaction represented by reaction I.	(1)
3.2.3	Using STRUCTURAL FORMULAE, write down a balanced equation for reaction II .	(4)
3.2.4	Write down the IUPAC name of compound Z .	(2)
3.2.5	Name the TYPE of reaction of which reaction III is an example.	(1)
3.2.6	List TWO reaction conditions needed for reaction III to take place effectively.	(2) [17]

QUESTION 4 (Start on a new page.)

- 4.1 Define the term *vapour pressure*.
- 4.2 The table below shows the vapour pressure values of three alkanes.

		Name	Vapour pressure (kPa at 20 °C)	
		ethane	3 750	
		propane	843	
		butane	204	
	4.2.1	Fully explain why the to butane.	e vapour pressure DECREASES from ethane	(3)
	4.2.2	Which of the alkane temperature?	s will be the most difficult to ignite at room	(1)
4.3	4.3.1	Predict whether etha pressure than ethane	nol will have a HIGHER or a LOWER vapour e.	(1)
	4.3.2	Fully explain the ans	wer to QUESTION 4.3.1.	(2) [10]

(3)

QUESTION 5 (Start on a new page.)

Learners use the reaction of a sodium thiosulphate solution $(Na_2S_2O_3)$ with a hydrochloric acid solution (HC ℓ) to investigate the factors which influence reaction rate.

The balanced equation for the reaction is:

 $Na_2S_2O_3(aq) + 2HC\ell(aq) \rightarrow H_2O(\ell) + SO_2(g) + 2NaC\ell(aq) + S(s)$

The time lapse from the moment of mixing equal volumes of the two solutions until a certain degree of turbidity (sulphur precipitation formation) appeared, is taken as a measure of the rate of the reaction.

5.1 Consider INVESTIGATION A:

	Temperature (°C)	Concentration of Na ₂ S ₂ O ₃ (mol·dm ⁻³)	Concentration of HCł (mol·dm ⁻³)	Time (s)
Experiment 1	20	0,5	0,5	40
Experiment 2	20	0,9	0,5	25
Experiment 3	20	1,4	0,5	15

- 5.1.1 For investigation **A**, name the:
 - (a) Dependent variable (1)
 - (b) Independent variable
- 5.1.2 What conclusion can be drawn from the results of investigation A? (2)
- 5.1.3 Which ONE of the two reactants ($Na_2S_2O_3$ or HCl) in experiment **1** of investigation **A** is the limiting reactant? Explain your answer.

5.2 Consider INVESTIGATION B:

	Temperature (°C)	Concentration of Na ₂ S ₂ O ₃ (mol·dm ⁻³)	Concentration of HCℓ (mol⋅dm ⁻³)	Time (s)
Experiment 4	20	0,5	0,5	40
Experiment 5	30	0,5	0,5	20
Experiment 6	50	0,5	0,5	10

- 5.2.1 In which experiment is the rate of the reaction the fastest? Give a reason for your answer.
- 5.2.2 Explain your observation in QUESTION 5.2.1 in terms of the collision theory.

(3) **[12]**

(2)

(1)

(3)

QUESTION 6 (Start on a new page.)

6.1 Solid potassium chromate (K_2CrO_4) is dissolved in water. In solution, the chromate ions ($CrO_4^{2^-}$) reach equilibrium with the dichromate ions ($Cr_2O_7^{2^-}$) according to the following balanced equation.

 $2\text{CrO}_4^{2\text{-}}(\text{aq}) + 2\text{H}^+(\text{aq}) \rightleftharpoons \text{Cr}_2\text{O}_7^{2\text{-}}(\text{aq}) + \text{H}_2\text{O}(\ell)$ Yellow Orange

Concentrated nitric acid is now added to the equilibrium mixture.

- 6.1.1 Predict the change in colour (if any) that will be observed as the nitric acid is added to the solution. ONLY Write down "Orange to Yellow", "Yellow to Orange" or "No Change". (1)
- 6.1.2 Which ONE of the two ions $(CrO_4^{2-} \text{ or } Cr_2O_7^{2-})$ is more stable in a solution with a low pH?

When the temperature is increased gradually, it is observed that the colour of the solution changes to yellow.

- 6.1.3 Is the forward reaction represented above exothermic or endothermic? (1)
- 6.1.4 Explain the answer in QUESTION 6.1.3 by referring to Le Chatelier's principle.
- 6.2 Five (5) moles of hydrogen gas and 5 moles of iodine vapour are sealed in a 2 dm³ vessel at a temperature of 600 K. The reaction reaches equilibrium according to the following balanced chemical equation:

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

- 6.2.1 Calculate the concentration of the hydrogen iodide (HI) at equilibrium if the equilibrium constant, K_c , at 600 K is 0,36.
- 6.2.2 The pressure on the system is now changed. The graphs below shows the changes in concentrations of the reactants and products as a result of this change.

Did the pressure INCREASE or DECREASE at t₁? Briefly explain.

(3) **[17]**

(1)

(3)

(8)

QUESTION 7 (Start on a new page.)

0,28 g of potassium hydroxide is dissolved in water and titrated against a solution of sulphuric acid. The end point is reached after adding exactly 20 cm³ of a sulphuric acid solution.

The balanced equation for this reaction is:

2KOH (aq) +
$$H_2SO_4(\ell) \rightarrow K_2SO_4(aq) + 2H_2O(\ell)$$

- 7.1 Define the term *endpoint*. (2)
 7.2 Calculate the concentration of the sulphuric acid solution. (5)
 7.3 Ammonium nitrate is used to lower the pH of agricultural soil. It is produced by the reaction of ammonia (NH₃) with nitric acid (HNO₃).
 - 7.3.1 Name the TYPE of reaction that takes place between ammonia and nitric acid. (1) 7.3.2 Write down a balanced equation for the preparation of ammonium nitrate. (3) 7.3.3 Is an aqueous solution of ammonium nitrate ACIDIC, ALKALINE or **NEUTRAL?** (1)7.3.4 Explain your answer to QUESTION 7.3.3 with the aid of a balanced equation. (4) [16]

QUESTION 8 (Start on a new page.)

8.1 The chloro-alkali industry makes use of brine as electrolyte to produce sodium hydroxide, chlorine and hydrogen gas. The unbalanced ionic equation for this reaction is:

$$C\ell^{-}(aq) + H_2O(\ell) \rightarrow C\ell_2(g) + H_2(g) + OH^{-}(aq)$$

- 8.1.1 Define the term *electrolyte*.
- 8.1.2 Write down the FORMULA of the oxidising agent in the above reaction. Use oxidation numbers to explain the answer. (3)
- 8.1.3 Balance the equation above using half-reactions.
- 8.2 The following diagram represents a galvanic cell that functions under standard conditions.

- 8.2.1 Which electrode is the anode?
- 8.2.2 Write down the equation for the oxidation half-reaction that takes place.
- 8.2.3 It is found that the voltmeter gives an initial reading of 1,61 V. Would the voltmeter reading be HIGHER or LOWER if the nickel halfcell is replaced by a copper half-cell under the same conditions? Verify your answer with a calculation.

(2)

(4)

(1)

(2)

(5) [**17**]

QUESTION 9 (Start on a new page.)

A learner sets up an electrolytic cell, represented in the diagram below, to purify copper which contains platinum and silver impurities.

During the purification of 28 g of the impure copper, 0,8 mol of electrons were transferred from the anode to the cathode.

9.1	Calculate the number of copper atoms formed at the cathode.	(3)
9.2	The copper used for electrical wiring and cables must be 99,99% pure.	

Determine by calculation whether the IMPURE copper sample is suitable for use in electrical wiring and cables.
 (Assume that all the copper at anode has reacted.)

During the purification, a sludge containing the metals platinum and silver forms at the bottom of the container.

9.3	Use the relative strengths of reducing agents to explain why platinum and	
	silver atoms are not oxidised during the purification of copper.	(3)
		[11]

(5)

QUESTION 10 (Start on a new page.)

10.1 Ammonia is used as a reactant in the preparation of nitrogen-based fertilisers.

Write down:

		TOTAL:	150
	10.3.2	Briefly explain the answer to QUESTION 10.3.1.	(2) [12]
	10.3.1	Which ONE of the following fertilisers must he use? Fertiliser A (4:5:8) or Fertiliser B (13:5:9)?	(1)
10.3	A farme	r wants to grow a better quality fruit.	
	Briefly d	iscuss this statement by referring to algal bloom and eutrophication.	(4)
10.2	"Overu	use of nitrogen-based fertilisers poses a threat to the environment."	
	10.1.3	The NAME of the catalyst used in this reaction.	(1)
	10.1.2	A balanced equation for the industrial preparation of ammonia.	(3)
	10.1.1	The NAME of the industrial process by which ammonia is prepared.	(1)

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAAM/NAME	SIMBOOL/SYMBOL	WAARDE/VALUE
Standard pressure	0	4.040 405 D
Standaarddruk	p°	1,013 x 10° Pa
Molar gas volume at STP		
	V _m	22,4 dm³⋅mol⁻¹
Molere gasvolume teen STD		
Standard temperature		
	Tθ	273 K
Standaardtemperatuur		
Charge on electron		10
	е	-1.6 x 10 ⁻¹⁹ C
Lading op elektron		,
Avogadro's constant		
_	N _A	6,02 x 10 ²³ mol ⁻¹
Avogadro se konstante		

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M} \text{ or/of}$ $n = \frac{N}{N_A} \text{ or/of}$ $n = \frac{V}{V_A}$	$c = \frac{n}{V} \text{ or/of } c = \frac{m}{MV}$ $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH= -log[H ₃ O ⁺] K _{w =} [H ₃ O ⁺][OH ⁻] = 1×10^{-14} at /by 298K						
V _m								
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$								
$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} / E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$								
$E^{\theta}_{cell} = E^{\theta}_{oxidising agent} - E^{\theta}_{reducing agent} / E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$								

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

1 (1)		2	3	•	4		5	6	7	8	9	10	11	12	13	14	15	16	17 ()/II)	18
(1)		(11)				ĸ	FY/	SI FUTF	-/	Atoon	ngetal				(111)	(17)	(v)	(VI)	(11)	(VIII)
1 1 7,1 1								022072	-	Atomic	number									2 He 4
3		4]				Fle	ktronega	tiwiteit		9	Simbo	ool		5	6	7	8	9	10
으 Li	,5	Ве					El	ectronega	ativity	→ ÷ U	;u ≁	Symb	ol		o B	0 12	° N	0.5	우 F	Ne
7	-	9							,	63	3,5				11	1 2	1 4	1 6	1 9	20
_ 11		12								↑	I				13	14	15	16	_ 17	18
on Na	7,2	Mg							Bena	derde rel	latiewe	atoomm	assa		Υ <u>ν</u> Αί	~ Si	N P	S .5	Cf Cf	Ar
23	-	24						-	Appro	oximate r	elative	atomic	mass	-	27	28	31	32	35,5	40
19		20	- 2	21	. 22	2	23	24	25	26	27	28	_ 29	30	31	32	33	34	35	36
δK	1,0	Ca	1,3	Sc	iT ج	1.6	V	~ Cr	ראי Mn	÷ Fe	~ Co	[∞] . Ni	Ç, Cu	<u></u> Zn	, Ga	~ Ge	N As	N Se	∾. Br	Kr
39		40	4	45	48	}	51	52	55	56	59	59	63,5	65	70	73	75	79	80	84
<u> </u>		38		39	_ 40)	41	<u> </u>	43	44	45	46	47	48	49	<u> </u>	51	_ 52	53	54
of Rb	1,0	Sr	1,2	Y	, Zr	,	Nb	[∞] . Wo	tc ² , Tc	Ru	Rh	R Pd	<u>, Ag</u>	Cd	¦∵ In	<u>∽</u> Sn	<u>,</u> Sp	Te	1.2	Хе
86		88	8	89	91		92	96		101	103	106	108	112	115	119	122	128	127	131
55		56		57	. 72		73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	0,9	Ва	L	La	6 H		Та	W	Re	Os	lr	Pt	Au	Hg	<u>∞</u> . T€	[∞] . Pb	Si Bi	N Po	At	Rn
133		137	1	39	17	9	181	184	186	190	192	195	197	201	204	207	209			
87		88	8	89																
🔓 Fr	0,9	Ra	ļ	Ac			50	50	<u> </u>	64	<u></u>	<u></u>	64	<u> </u>	<u> </u>	67	<u> </u>	<u> </u>	70	74
		226					58 Co	59 Dr	60 N.d	01 Dm	62 Sm	63 E	64 Cd	60 Th	00 Dv	67	68 Fr	69 T	/U Vh	11
								Pr		Pm	5m	EU	60 457	10	Dy 162			10	10	LU 475
							140	04	02	02	150	152	15/	159	103	00	107	109	1/3	1/5
							90 Ть	91 De	92	93	94	90	90	9/ DL	30	99		101 Mal	102	103
							in	Ра	U	мр	Pu	AM	Cm	BK	CT	ES	Fm	INIC	NO	Lr
							232		238			1								

17

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

Half-reactions	E ^θ (V)		
F ₂ (g) + 2e ⁻	1	2F ⁻	+ 2,87
Co ³⁺ + e ⁻	≠	Co ²⁺	+ 1,81
$H_2O_2 + 2H^+ + 2e^-$	#	2H₂O	+1,77
$MnO_4^- + 8H^+ + 5e^-$	⇒	Mn ²⁺ + 4H ₂ O	+ 1,51
$C\ell_2(g) + 2e^-$	⇒	2Cℓ ⁻	+ 1,36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	≠	2Cr ³⁺ + 7H ₂ O	+ 1,33
$O_2(g) + 4H^+ + 4e^-$	≠	2H ₂ O	+ 1,23
$MnO_2 + 4H^+ + 2e^-$	≠	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e [−]	≠	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	≠	2Br [−]	+ 1,07
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	≠	NO(g) + 2H ₂ O	+ 0,96
Hg ²⁺ + 2e [−]	≠	Hg(ℓ)	+ 0,85
$Ag^+ + e^-$	≠	Ag	+ 0,80
$NO_{3}^{-} + 2H^{+} + e^{-}$	≠	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e [−]	≠	Fe ²⁺	+ 0,77
$O_2(g) + 2H^+ + 2e^-$	≠	H_2O_2	+ 0,68
l ₂ + 2e [−]	≠	2I⁻	+ 0,54
Cu⁺ + e⁻	≠	Cu	+ 0,52
SO ₂ + 4H ⁺ + 4e [−]	≠	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e [−]	≠	40H ⁻	+ 0,40
 Cu ²⁺ + 2e [_]	⇒	Cu	+ 0,34
$SO_{4}^{2-} + 4H^{+} + 2e^{-}$	≠	SO ₂ (g) + 2H ₂ O	+ 0,17
+ Cu ²⁺ + e [−]	<u> </u>	Cu⁺	+ 0.16
Sn ⁴⁺ + 2e⁻	` ≓	Sn ²⁺	+ 0,15
S + 2H ⁺ + 2e [−]	=	H ₂ S(g)	+ 0.14
2H ⁺ + 2e [−]	=	H ₂ (g)	0,00
Fe ³⁺ + 3e⁻	⇒	Fe	- 0,06
Pb ²⁺ + 2e ⁻	≠	Pb	- 0,13
Sn ²⁺ + 2e [−]	≠	Sn	- 0,14
Ni ²⁺ + 2e ⁻	≠	Ni	- 0,27
Co ²⁺ + 2e ⁻	≠	Со	- 0,28
Cd ²⁺ + 2e ⁻	≠	Cd	- 0,40
Cr ³⁺ + e [−]	≠	Cr ²⁺	- 0,41
Fe ²⁺ + 2e [−]	⇒	Fe	- 0,44
Cr ³⁺ + 3e [−]	⇒	Cr	- 0,74
Zn ²⁺ + 2e [−]	⇒	Zn	- 0,76
2H₂O + 2e [−]	≠	H₂(g) + 2OH [−]	- 0,83
Cr ²⁺ + 2e⁻	⇒	Cr	- 0,91
Mn ²⁺ + 2e [−]	⇒	Mn	- 1,18
$Al^{3+} + 3e^{-}$	⇒	Ał	- 1,66
Mg ²⁺ + 2e ⁻	≠	Mg	- 2,36
Na ⁺ + e [−]	≠	Na	- 2,71
Ca ²⁺ + 2e [−]	≠	Са	- 2,87
Sr ²⁺ + 2e [−]	≠	Sr	- 2,89
Ba ²⁺ + 2e⁻	≠	Ва	- 2,90
Cs⁺ + e⁻	≠	Cs	- 2,92
K⁺ + e⁻	⇒	К	- 2,93
Li ⁺ + e [−]	≠	Li	- 3,05

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing reducing ability/Toenemende reduserende vermoë

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS
TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

Half-reactions	E ^θ (V)		
Li⁺ + e⁻	≠	Li	- 3,05
K ⁺ + e ⁻	≠	К	- 2,93
Cs⁺ + e⁻	≠	Cs	- 2,92
Ba ²⁺ + 2e⁻	⇒	Ва	- 2,90
Sr ²⁺ + 2e⁻	⇒	Sr	- 2,89
Ca ²⁺ + 2e⁻	⇒	Са	- 2,87
Na⁺ + e⁻	⇒	Na	- 2,71
Mg ²⁺ + 2e ⁻	⇒	Mg	- 2,36
Aℓ ³⁺ + 3e ⁻	⇒	Ał	- 1,66
Mn ²⁺ + 2e⁻	≠	Mn	- 1,18
Cr ²⁺ + 2e⁻	≠	Cr	- 0,91
2H ₂ O + 2e [−]	≠	H ₂ (g) + 2OH ⁻	- 0,83
Zn ²⁺ + 2e⁻	≠	Zn	- 0,76
Cr ³⁺ + 3e [−]	⇒	Cr	- 0,74
Fe ²⁺ + 2e ⁻	⇒	Fe	- 0,44
Cr ³⁺ + e⁻	⇒	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	⇒	Cd	- 0,40
Co ²⁺ + 2e [−]	⇒	Co	- 0,28
Ni ²⁺ + 2e [−]	⇒	Ni	- 0,27
Sn ²⁺ + 2e⁻	⇒	Sn	- 0,14
Pb ²⁺ + 2e [−]	⇒	Pb	- 0,13
Fe ³⁺ + 3e ⁻	⇒	Fe	- 0,06
2H ⁺ + 2e [−]	÷	H ₂ (g)	0,00
S + 2H ⁺ + 2e [−]	⇒	$H_2S(g)$	+ 0,14
Sn ⁴⁺ + 2e⁻	⇒	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	⇒	Cu⁺	+ 0,16
SO ^{2−} ₄ + 4H ⁺ + 2e ⁻	⇒	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e⁻	⇒	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	≠	40H ⁻	+ 0,40
SO₂ + 4H ⁺ + 4e ⁻	≠	S + 2H ₂ O	+ 0,45
Cu⁺ + e⁻	⇒	Cu	+ 0,52
l₂ + 2e [−]	≠	2l ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	⇒	H_2O_2	+ 0,68
Fe ³⁺ + e [−]	⇒	Fe ²⁺	+ 0,77
$NO_3^- + 2H^+ + e^-$	≑	NO ₂ (g) + H ₂ O	+ 0,80
Ag⁺ + e⁻	⇒	Ag	+ 0,80
Hg ²⁺ + 2e⁻	⇒	Hg(ℓ)	+ 0,85
$NO_3^- + 4H^+ + 3e^-$	⇒	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2e^-$	⇒	2Br⁻	+ 1,07
Pt ²⁺ + 2 e⁻	⇒	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	⇒	$Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	⇒	2H ₂ O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	⇒	2Cr ³⁺ + 7H ₂ O	+ 1,33
$C\ell_2(g) + 2e^-$	⇒	2C ł ⁻	+ 1,36
MnO _4 + 8H⁺ + 5e⁻	⇒	$Mn^{2+} + 4H_2O$	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e [−]	≠	2H ₂ O	+1,77
Co ³⁺ + e ⁻	⇒	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	≠	2F ⁻	+ 2,87

Increasing oxidising ability/Toenemende oksiderende vermoë